|
|
A130589
|
|
a(n) = F(F(n)-1), where F(n) = A000045(n) (the Fibonacci numbers).
|
|
1
|
|
|
1, 0, 0, 1, 1, 3, 13, 144, 6765, 3524578, 86267571272, 1100087778366101931, 343358302784187294870275058337, 1366619256256991435939546543402365995473880912459, 1697726516284295515651670644354144400761613511040643009353262085480136081475307
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
F(F(n+1)=A007570(n+1), namely, 1,1,2,5,21,233,...
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..19
|
|
EXAMPLE
|
a(1)=F(F(1)-1)=F(0)=0;
a(2)=F(F(2)-1)=F(0)=0;
a(3)=F(F(3)-1)=F(1)=1;
a(4)=F(F(4)-1)=F(2)=1;
a(5)=F(F(5)-1)=F(4)=3;
|
|
MAPLE
|
with(combinat): a:= proc(n) fibonacci(fibonacci(n)-1) end proc: seq(a(n), n = 0 .. 14);
# second Maple program:
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= n-> F(F(n)-1):
seq(a(n), n=0..14); # Alois P. Heinz, Nov 07 2018
|
|
MATHEMATICA
|
Fibonacci[Fibonacci[Range[15]]-1] (* Harvey P. Dale, Feb 18 2018 *)
|
|
CROSSREFS
|
Cf. A000045.
Cf. A007570.
Sequence in context: A161677 A180276 A054933 * A041591 A001150 A108554
Adjacent sequences: A130586 A130587 A130588 * A130590 A130591 A130592
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Jun 16 2007
|
|
EXTENSIONS
|
Edited by Emeric Deutsch, Jul 10 2007
a(0)=1 prepended by Alois P. Heinz, Nov 07 2018
|
|
STATUS
|
approved
|
|
|
|