login
A130568
Generalized Beatty sequence 1+2*floor(n*phi), which contains infinitely many primes.
3
1, 3, 7, 9, 13, 17, 19, 23, 25, 29, 33, 35, 39, 43, 45, 49, 51, 55, 59, 61, 65, 67, 71, 75, 77, 81, 85, 87, 91, 93, 97, 101, 103, 107, 111, 113, 117, 119, 123, 127, 129, 133, 135, 139, 143, 145, 149, 153, 155, 159, 161, 165, 169, 171, 175, 177, 181, 185, 187, 191, 195
OFFSET
0,2
COMMENTS
The primes in this entirely odd sequence begin 3, 7, 13, 17, 19, 23, 29. By the theorems in Banks, there are an infinite number of primes in this sequence.
Conjecture: Sequence gives n of A163873 whose connection to a(n) crosses (in the tree of A163873) another path. Is this generalizable in any way for A163874, A163875? - Daniel Platt (d.platt(AT)web.de), Sep 14 2009
LINKS
William D. Banks, Igor E. Shparlinski, Prime numbers with Beatty sequences, arXiv:0708.1015 [math.NT], 7 Aug 2007.
FORMULA
a(n) = 1+2*floor(n*phi), where phi = (1 + sqrt(5))/2.
EXAMPLE
a(0) = 1 + 2*floor(0*phi) = 1 + 2*0 = 1.
a(1) = 1 + 2*floor(1*phi) = 1 + 2*floor(1.6180) = 1 + 2*1 = 3.
a(2) = 1 + 2*floor(2*phi) = 1 + 2*floor(3.2360) = 1 + 2*3 = 7.
a(3) = 1 + 2*floor(3*phi) = 1 + 2*floor(4.8541) = 1 + 2*4 = 9.
a(4) = 1 + 2*floor(4*phi) = 1 + 2*floor(6.4721) = 1 + 2*6 = 13.
a(5) = 1 + 2*floor(5*phi) = 1 + 2*floor(8.0901) = 1 + 2*8 = 17.
a(6) = 1 + 2*floor(6*phi) = 1 + 2*floor(9.7082) = 1 + 2*9 = 19.
a(7) = 1 + 2*floor(7*phi) = 1 + 2*floor(11.3262) = 1 + 2*11 = 23.
a(8) = 1 + 2*floor(8*phi) = 1 + 2*floor(12.9442) = 1 + 2*12 = 25.
a(9) = 1 + 2*floor(9*phi) = 1 + 2*floor(14.5623) = 1 + 2*14 = 29.
a(10) = 1 + 2*floor(10*phi) = 1 + 2*floor(16.1803) = 1 + 2*16 = 33.
MATHEMATICA
Table[1 + 2*Floor[n*(Sqrt[5] + 1)/2], {n, 0, 80}] (* Stefan Steinerberger, Aug 10 2007 *)
PROG
(Magma) [1+2*Floor(n*((1+Sqrt(5))/2)): n in [0..60]]; // Vincenzo Librandi, Sep 17 2015
CROSSREFS
Cf. A001622.
Sequence in context: A063204 A236208 A284884 * A143803 A284894 A020497
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Aug 09 2007
EXTENSIONS
More terms from Stefan Steinerberger, Aug 10 2007
STATUS
approved