login
Numerators of partial sums of a series for 6*(5 - 4*Zeta(3)).
2

%I #10 Aug 30 2019 03:57:20

%S 1,10,409,10297,8031,394019,9462581,766743461,8435956183,

%T 1020884056543,13272613316059,2243198436149971,2243285892433171,

%U 2243347792046947,305101392961615867,88175602457796281563,186150555360181760633

%N Numerators of partial sums of a series for 6*(5 - 4*Zeta(3)).

%C Denominators are given in A130558.

%C The rational sequence r(n) = 24*Sum_{j=2..n} 1/(j^3*(j^2-1)), n >= 2, tends, in the limit n->infinity, to 6*(5-4*Zeta(3)) which is approximately 1.15063433.

%D Z. A. Melzak, Companion to concrete mathematics,( Vol.I), Wiley, New York, 1973, pp. 83-84.

%H W. Lang, <a href="/A130557/a130557.txt">Rationals and limit</a>.

%F a(n) = numerator(r(n)), n >= 2, with the rationals r(n) defined above.

%e Rationals r(n), n >= 2: 1, 10/9, 409/360, 10297/9000, 8031/7000, 394019/343000, ....

%Y Cf. A130551/A130552 with the limit (4/5)*Zeta(3).

%K nonn,frac,easy

%O 2,2

%A _Wolfdieter Lang_, Jul 13 2007