This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130551 Numerators of partial sums for a series of (4/5)*Zeta(3). 4
 1, 23, 1039, 58157, 1454021, 6854599, 30564710941, 244517610353, 37411196579209, 64619338818497, 86008340157931507, 8951094220597141, 334314418075511195849, 334314418069194908729, 48475590620225838341897 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The rationals r(n):=2*sum(((-1)^(j-1))/((j^3)*binomial(2*j,j)),j=1..n), tend for n->infinity, to (4/5)*Zeta(3), which is approximately 0.9616455224. See the van der Poorten reference. The denominators are given in A130552. REFERENCES A. van der Poorten, A proof that Euler missed..., Math. Intell. 1(1979)195-203; reprinted in Pi: A Source Book, pp. 439-447, eq. 2, with a proof in section 3 and further references in footnote 4. L. Berggren, T. Borwein and P. Borwein, Pi: A Source Book, Springer, New York, 1997, p. 687. LINKS W. Lang, Rationals and limit. FORMULA a(n)=numerator(r(n)), n>=1, with the rationals r(n) defined above and taken in lowest terms. EXAMPLE Rationals r(n): [1, 23/24, 1039/1080, 58157/60480, 1454021/1512000, ...]. CROSSREFS Sequence in context: A139193 A077283 A167244 * A069479 A174748 A042015 Adjacent sequences:  A130548 A130549 A130550 * A130552 A130553 A130554 KEYWORD nonn,frac,easy AUTHOR Wolfdieter Lang, Jul 13 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 01:08 EDT 2019. Contains 321479 sequences. (Running on oeis4.)