login
A130551
Numerators of partial sums for a series of (4/5)*Zeta(3).
4
1, 23, 1039, 58157, 1454021, 6854599, 30564710941, 244517610353, 37411196579209, 64619338818497, 86008340157931507, 8951094220597141, 334314418075511195849, 334314418069194908729, 48475590620225838341897
OFFSET
1,2
COMMENTS
The rationals r(n):=2*sum(((-1)^(j-1))/((j^3)*binomial(2*j,j)),j=1..n), tend for n->infinity, to (4/5)*Zeta(3), which is approximately 0.9616455224. See the van der Poorten reference.
The denominators are given in A130552.
REFERENCES
A. van der Poorten, A proof that Euler missed..., Math. Intell. 1(1979)195-203; reprinted in Pi: A Source Book, pp. 439-447, eq. 2, with a proof in section 3 and further references in footnote 4.
L. Berggren, T. Borwein and P. Borwein, Pi: A Source Book, Springer, New York, 1997, p. 687.
FORMULA
a(n)=numerator(r(n)), n>=1, with the rationals r(n) defined above and taken in lowest terms.
EXAMPLE
Rationals r(n): [1, 23/24, 1039/1080, 58157/60480, 1454021/1512000, ...].
CROSSREFS
Sequence in context: A139193 A077283 A167244 * A069479 A174748 A042015
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Jul 13 2007
STATUS
approved