The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130497 Repetition of odd numbers five times. 4
 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 21, 21, 21, 21, 21, 23, 23, 23, 23, 23, 25, 25, 25, 25, 25, 27, 27, 27, 27, 27, 29, 29, 29, 29, 29, 31, 31, 31 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1). FORMULA a(n) = -1 + 2*Sum_{k=0..n} {[8*(sin(2*Pi*k/5))^2-5]^2-5}/20, with n>=0. a(n) = -1 + (1/25)*Sum_{k=0..n} ( (-9*[k mod 5] +[(k+1) mod 5] +[(k+2) mod 5] +[(k+3) mod 5] +11*[(k+4) mod 5]) ), with n>=0. a(n) = -1 + 2*Sum{k=0..n} (1 - (k^4 mod 5) ), with n>=0. - Paolo P. Lava, Feb 17 2010 From R. J. Mathar, Mar 17 2010: (Start) a(n) = a(n-1) + a(n-5) - a(n-6). G.f.: (1+x)*(1-x+x^2-x^3+x^4)/((1+x+x^2+x^3+x^4) * (1-x)^2 ). (End) a(n) = 2*floor(n/5)+1 = A130496(n)+1. - Tani Akinari, Jul 24 2013 MAPLE P:=proc(n) local i, j, k; for i from 0 by 1 to n do j:=-1+2*sum('(8*(sin(2*Pi*k/5))^2-5)^2-5', 'k'=0..i)/20 ; print(j); od; end: P(100); MATHEMATICA Flatten[Table[#, {5}]&/@Range[1, 31, 2]] (* Harvey P. Dale, Mar 27 2013~ *) PROG (PARI) my(x='x+O('x^80)); Vec((1+x^5)/((1-x)*(1-x^5))) \\ G. C. Greubel, Sep 12 2019 (Magma) R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (1+x^5)/((1-x)*(1-x^5)) )); // G. C. Greubel, Sep 12 2019 (Sage) def A130497_list(prec): P. = PowerSeriesRing(ZZ, prec) return P((1+x^5)/((1-x)*(1-x^5))).list() A130497_list(80) # G. C. Greubel, Sep 12 2019 (GAP) a:=[1, 1, 1, 1, 1, 3];; for n in [7..80] do a[n]:=a[n-1]+a[n-5]-a[n-6]; od; a; # G. C. Greubel, Sep 12 2019 CROSSREFS Cf. A129756. Sequence in context: A204854 A113215 A105591 * A178154 A270774 A263144 Adjacent sequences: A130494 A130495 A130496 * A130498 A130499 A130500 KEYWORD easy,nonn AUTHOR Paolo P. Lava and Giorgio Balzarotti, May 31 2007 EXTENSIONS Corrected formula by Paolo P. Lava, Feb 17 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 18:51 EST 2022. Contains 358421 sequences. (Running on oeis4.)