login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130482 a(n) = Sum_{k=0..n} (k mod 4) (Partial sums of A010873). 28
0, 1, 3, 6, 6, 7, 9, 12, 12, 13, 15, 18, 18, 19, 21, 24, 24, 25, 27, 30, 30, 31, 33, 36, 36, 37, 39, 42, 42, 43, 45, 48, 48, 49, 51, 54, 54, 55, 57, 60, 60, 61, 63, 66, 66, 67, 69, 72, 72, 73, 75, 78, 78, 79, 81, 84, 84, 85, 87, 90, 90, 91, 93, 96, 96, 97, 99, 102, 102, 103, 105 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 4, A[i,i]:=1, A[i,i-1]=-1. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 24 2010

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).

FORMULA

a(n) = 6*floor(n/4) + A010873(n)*(A010873(n)+1)/2.

G.f.: x*(1 + 2*x + 3*x^2)/((1-x^4)*(1-x)).

a(n) = (1 - (-1)^n - (2*i)*(-i)^n + (2*i)*i^n + 6*n) / 4 where i = sqrt(-1). - Colin Barker, Oct 15 2015

a(n) = 3*n/2 + (n mod 2)* ( (n-1) mod 4 ) - (n mod 2)/2. - Ammar Khatab, Aug 27 2020

E.g.f.: (3*x*exp(x) - 2*sin(x) + sinh(x))/2. - Stefano Spezia, Apr 22 2021

Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) + log(3)/4. - Amiram Eldar, Sep 17 2022

MAPLE

a:=n->add(chrem( [n, j], [1, 4] ), j=1..n):seq(a(n), n=0..70); # Zerinvary Lajos, Apr 07 2009

MATHEMATICA

Table[(6*n +(1-(-1)^n)*(1+2*I^(n+1)))/4, {n, 0, 70}] (* G. C. Greubel, Aug 31 2019 *)

PROG

(PARI) a(n) = (1 - (-1)^n - (2*I)*(-I)^n + (2*I)*I^n + 6*n) / 4 \\ Colin Barker, Oct 15 2015

(Magma) I:=[0, 1, 3, 6, 6]; [n le 5 select I[n] else Self(n-1) + Self(n-4) - Self(n-5): n in [1..71]]; // G. C. Greubel, Aug 31 2019

(Sage)

def A130482_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P(x*(1+2*x+3*x^2)/((1-x^4)*(1-x))).list()

A130482_list(70) # G. C. Greubel, Aug 31 2019

(GAP) a:=[0, 1, 3, 6, 6];; for n in [6..71] do a[n]:=a[n-1]+a[n-4]-a[n-5]; od; a; # G. C. Greubel, Aug 31 2019

CROSSREFS

Cf. A010872, A010874, A010875, A010876, A010877. A130481, A130483, A130484, A130485.

Sequence in context: A153035 A296216 A072910 * A239318 A177783 A228945

Adjacent sequences:  A130479 A130480 A130481 * A130483 A130484 A130485

KEYWORD

nonn,easy

AUTHOR

Hieronymus Fischer, May 29 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 05:48 EST 2022. Contains 358353 sequences. (Running on oeis4.)