The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130481 a(n) = Sum_{k=0..n} (k mod 3) (i.e., partial sums of A010872). 31
 0, 1, 3, 3, 4, 6, 6, 7, 9, 9, 10, 12, 12, 13, 15, 15, 16, 18, 18, 19, 21, 21, 22, 24, 24, 25, 27, 27, 28, 30, 30, 31, 33, 33, 34, 36, 36, 37, 39, 39, 40, 42, 42, 43, 45, 45, 46, 48, 48, 49, 51, 51, 52, 54, 54, 55, 57, 57, 58, 60, 60, 61, 63, 63, 64, 66, 66, 67, 69, 69, 70, 72, 72 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Essentially the same as A092200. - R. J. Mathar, Jun 13 2008 Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 3, A[i,i]:=1, A[i,i-1]=-1. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 24 2010 2-adic valuation of A104537(n+1). - Gerry Martens, Jul 14 2015 Conjecture: a(n) is the exponent of the largest power of 2 that divides all the entries of the matrix {{3,1},{1,-1}}^n. - Greg Dresden, Sep 09 2018 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1). FORMULA a(n) = 3*floor(n/3) + A010872(n)*(A010872(n) + 1)/2. G.f.: x*(1 + 2*x)/((1-x^3)*(1-x)). a(n) = n + 1 - (Fibonacci(n+1) mod 2). - Gary Detlefs, Mar 13 2011 a(n) = floor((n+1)/3) + floor(2*(n+1)/3). - Clark Kimberling, May 28 2010 a(n) = n when n+1 is not a multiple of 3, and a(n) = n+1 when n+1 is a multiple of 3. - Dennis P. Walsh, Aug 06 2012 a(n) = n + 1 - sign((n+1) mod 3). - Wesley Ivan Hurt, Sep 25 2017 a(n) = n + (1-cos(2*(n+2)*Pi/3))/3 + sin(2*(n+2)*Pi/3)/sqrt(3). - Wesley Ivan Hurt, Sep 27 2017 a(n) = n + 1 - (n+1)^2 mod 3. - Ammar Khatab, Aug 14 2020 E.g.f.: ((1 + 3*x)*cosh(x) - (cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))*(cosh(x/2) - sinh(x/2)) + (1 + 3*x)*sinh(x))/3. - Stefano Spezia, May 28 2021 Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(3*sqrt(3)) + log(2)/3. - Amiram Eldar, Sep 17 2022 MAPLE seq(coeff(series(x*(1+2*x)/((1-x^3)*(1-x)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Aug 31 2019 MATHEMATICA a[n_]:= Floor[(n+1)/3] + Floor[2(n+1)/3]; Table[a[n], {n, 0, 80}] (* Clark Kimberling, May 28 2012 *) a[n_]:= IntegerExponent[A104537[n + 1], 2]; Table[a[n], {n, 0, 80}]  (* Gerry Martens, Jul 14 2015 *) CoefficientList[Series[x(1+2x)/((1-x^3)(1-x)), {x, 0, 80}], x] (* Stefano Spezia, Sep 09 2018 *) LinearRecurrence[{1, 0, 1, -1}, {0, 1, 3, 3}, 100] (* Harvey P. Dale, Jun 14 2021 *) PROG (PARI) main(size)=my(n, k); vector(size, n, sum(k=0, n, k%3)) \\ Anders Hellström, Jul 14 2015 (PARI) first(n)=my(s); concat(0, vector(n, k, s+=k%3)) \\ Charles R Greathouse IV, Jul 14 2015 (PARI) a(n)=n\3*3+[0, 1, 3][n%3+1] \\ Charles R Greathouse IV, Jul 14 2015 (Magma) [Floor((n+1)/3) + Floor(2*(n+1)/3): n in [0..80]]; // G. C. Greubel, Aug 31 2019 (Sage) def A130481_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P(x*(1+2*x)/((1-x^3)*(1-x))).list() A130481_list(80) # G. C. Greubel, Aug 31 2019 (GAP) List([0..80], n-> Int((n+1)/3) + Int(2*(n+1)/3)); # G. C. Greubel, Aug 31 2019 CROSSREFS Cf. A010872, A010873, A010874, A010875, A010876, A010877, A130482, A130483, A130484. Cf. A092200, A104537. Sequence in context: A337019 A196245 A092200 * A145805 A277192 A098238 Adjacent sequences:  A130478 A130479 A130480 * A130482 A130483 A130484 KEYWORD nonn,easy AUTHOR Hieronymus Fischer, May 29 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 07:57 EST 2022. Contains 358354 sequences. (Running on oeis4.)