login
A130464
Main diagonal of square array A130462.
2
1, 2, 12, 83, 617, 4759, 37649, 303372, 2480181, 20518329, 171457967, 1445229218, 12274844031, 104959302925, 902902513636, 7809311838692, 67875146116705, 592568780652517, 5194275815373130, 45700207950481330, 403444930677602011
OFFSET
0,2
COMMENTS
All upper diagonals of square array A130462 have a g.f. D(x,n) equal to the product of this main diagonal g.f. D(x,0) and a power of G(x), the g.f. of A002293: D(x,n) = D(x,0)*G(x)^n, where G(x) satisfies G(x) = 1 + x*G(x)^4.
EXAMPLE
Square array A130462 begins:
(1), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
(1), (2), 3, 4, 5, 6, 7, 8, 9, 10, ...;
(3), 7, (12), 18, 25, 33, 42, 52, ...;
(7), 25, 50, (83), 125, 177, 240, ...;
(25), 75, 200, 377, (617), 932, ...;
(75), 275, 652, 1584, 2919, (4759), ...; ...
where row n+1 equals the partial sums of the sequence resulting from removing the terms in the first column and main diagonal from row n.
CROSSREFS
Cf. A130462 (array), A130463 (first column); A002293.
Sequence in context: A052864 A355378 A136278 * A319326 A214765 A006657
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 26 2007
STATUS
approved