login
A130410
Alternating row sums of triangle A130191 (Stirling2)^2.
8
1, -1, -1, 0, 6, 32, 115, 172, -2030, -29013, -250051, -1587556, -5178877, 52922256, 1435509569, 20813187553, 230664704969, 1884809758791, 5120430335582, -216605840330716, -6440821191934686, -122368984222010397, -1842986108839510180, -21473141673616814694
OFFSET
0,5
COMMENTS
Stirling2 transform of A000587. 2nd Stirling2 transform of A033999. - Vladimir Reshetnikov, Oct 22 2015
LINKS
Eric Weisstein's MathWorld, Stirling Transform.
Eric Weisstein's MathWorld, Bell Polynomial.
FORMULA
a(n) = sum(A130191(n,m)*(-1)^m,m=0..n), n>=0.
E.g.f.: 1/exp(f(x)) with f(x):=exp(exp(x)-1)-1.
a(n) = sum(k=0..n, A000587(k)*stirling2(n,k)) = sum(k=0..n, B_k(-1)*stirling2(n,k)), where B_k(x) is k-th Bell polynomial.
EXAMPLE
E.g.f.: 1 - x - (1/2)*x^2 + (1/4)*x^4+(4/15)*x^5 + (23/144)*x^6 + (43/1260)*x^7 - (29/576)*x^8 - (9671/120960)*x^9 ...
G.f. = 1 - x - x^2 + 6*x^4 + 32*x^5 + 115*x^6 + 172*x^7 - 2030*x^8 - 29013*x^9 + ...
MAPLE
Egf:= 1/exp(exp(exp(x)-1)-1):
S:= series(Egf, x, 101):
seq(coeff(S, x, j)*j!, j=0..100); # Robert Israel, Oct 22 2015
MATHEMATICA
Table[Sum[BellY[n, k, -BellB[Range[n]]], {k, 0, n}], {n, 0, 23}] (* Vladimir Reshetnikov, Nov 09 2016 *)
CROSSREFS
Cf. A048993, A000258 (row sums of A130191), A000587, A033999, A130191.
Sequence in context: A000397 A200765 A239573 * A202807 A203324 A027217
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang Jun 01 2007
STATUS
approved