login
A130404
Partial sums of A093178.
1
1, 2, 3, 6, 7, 12, 13, 20, 21, 30, 31, 42, 43, 56, 57, 72, 73, 90, 91, 110, 111, 132, 133, 156, 157, 182, 183, 210, 211, 240, 241, 272, 273, 306, 307, 342, 343, 380, 381, 420, 421, 462, 463, 506, 507, 552, 553, 600, 601, 650, 651, 702, 703, 756, 757, 812, 813
OFFSET
1,2
COMMENTS
Numbers n such that floor(n/2) is a positive triangular number. - Bruno Berselli, Sep 15 2014
FORMULA
a(1) = 1; for n > 1, a(n) = a(n-1)+1 if n is odd, a(n) = a(n-1)+(n-1) if n is even.
a(n) = A002061((n+1)/2) = (n^2+3)/4 if n is odd, a(n) = A002378(n/2) = (n^2+2*n)/4 if n is even.
G.f.: x*(1+x-x^2+x^3)/((1-x)^3*(1+x)^2).
a(n) = A093178(n) - A093178(n-1).
a(1) = 1; a(n) = a(n-1) + n^(n mod 2) = (1/4)*(n^2 + 2n + 4 + (n mod 2)*(2n-1)). - Rolf Pleisch, Feb 04 2008
a(n) = (2*(n-1)*(n+2) + (2*n-3)*(-1)^n+7)/8. - Bruno Berselli, Mar 31 2011
MATHEMATICA
Table[If[EvenQ[n], 1, n], {n, 0, 56}] // Accumulate (* Jean-François Alcover, Jun 10 2013 *)
Accumulate[Join[{1}, Riffle[Range[1, 85, 2], 1]]] (* or *) LinearRecurrence[ {1, 2, -2, -1, 1}, {1, 2, 3, 6, 7}, 90] (* Harvey P. Dale, Jun 01 2016 *)
PROG
(PARI) {s=0; for(n=1, 57, s=s+if(n%2>0, 1, n-1); print1(s, ", "))}
(PARI) {for(n=1, 57, print1(if(n%2>0, (n^2+3)/4, (n^2+2*n)/4), ", "))}
(Magma) &cat[ [ n^2-n+1, n*(n+1) ]: n in [1..29] ];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, May 25 2007
STATUS
approved