This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130260 Minimal index k of an even Fibonacci number A001906 such that A001906(k) = Fib(2k) >= n (the 'upper' even Fibonacci Inverse). 7
 0, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Inverse of the even Fibonacci sequence (A001906), since a(A001906(n))=n (see A130259 for another version). a(n+1) is the number of even Fibonacci numbers (A001906) <=n. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 FORMULA a(n) = ceiling(arcsinh(sqrt(5)*n/2)/(2*log(phi))) for n>=0. a(n) = ceiling(arccosh(sqrt(5)*n/2)/(2*log(phi))) for n>=1. a(n) = ceiling(log_phi(sqrt(5)*n)/2)=ceiling(log_phi(sqrt(5)*n-1)/2) for n>=1, where phi=(1+sqrt(5))/2. a(n) = A130259(n-1) + 1, for n>=1. G.f.: g(x)=x/(1-x)*Sum_{k>=0} x^Fib(2*k). EXAMPLE a(10)=4 because A001906(4)=21>=10, but A001906(3)=8<10. MATHEMATICA Join[{0}, Table[Ceiling[Log[GoldenRatio, Sqrt[5]*n]/2], {n, 1, 100}]] (* G. C. Greubel, Sep 12 2018 *) PROG (PARI) for(n=0, 100, print1(if(n==0, 0, ceil(log(sqrt(5)*n)/(2*log((1+ sqrt(5))/2)))), ", ")) \\ G. C. Greubel, Sep 12 2018 (MAGMA) [0] cat [Ceiling(Log(Sqrt(5)*n)/(2*Log((1+ Sqrt(5))/2))): n in [1..100]]; // G. C. Greubel, Sep 12 2018 CROSSREFS Cf. partial sums A130262. Other related sequences: A000045, A001519, A130234, A130237, A130239, A130256, A130259. Lucas inverse: A130241 - A130248. Sequence in context: A161358 A120699 A072643 * A276621 A111393 A323665 Adjacent sequences:  A130257 A130258 A130259 * A130261 A130262 A130263 KEYWORD nonn AUTHOR Hieronymus Fischer, May 25 2007, May 28 2007, Jul 02 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 04:25 EDT 2019. Contains 328315 sequences. (Running on oeis4.)