login
A130253
Number of Jacobsthal numbers (A001045) <=n.
14
1, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
OFFSET
0,2
COMMENTS
Partial sums of the Jacobsthal indicator sequence (A105348).
For n<>1, we have a(A001045(n))=n+1.
LINKS
Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, On some new results for the generalised Lucas sequences, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36.
FORMULA
a(n) = floor(log_2(3n+1)) + 1 = ceiling(log_2(3n+2)).
a(n) = A130249(n) + 1 = A130250(n+1).
G.f.: 1/(1-x)*(Sum_{k>=0} x^A001045(k)).
EXAMPLE
a(9)=5 because there are 5 Jacobsthal numbers <=9 (0,1,1,3 and 5).
MATHEMATICA
Table[1+Floor[Log[2, 3n+1]], {n, 0, 100}] (* Harvey P. Dale, Jul 03 2013 *)
PROG
(PARI) a(n)=logint(3*n+1, 2)+1 \\ Charles R Greathouse IV, Oct 03 2016
(Magma) [Ceiling(Log(3*n+2)/Log(2)): n in [0..30]]; // G. C. Greubel, Jan 08 2018
CROSSREFS
For partial sums see A130252. Other related sequences A001045, A130249, A130250, A130253, A105348. Also A130233, A130235, A130241, A108852, A130245.
Sequence in context: A240622 A364883 A130250 * A145288 A075324 A134993
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, May 20 2007
STATUS
approved