This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130253 Number of Jacobsthal numbers (A001045) <=n. 12
 1, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Partial sums of the Jacobsthal indicator sequence (A105348). For n<>1, we have a(A001045(n))=n+1. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 FORMULA a(n) = floor(log_2(3n+1)) + 1 = ceiling(log_2(3n+2)). a(n) = A130249(n) + 1 = A130250(n+1). G.f.: 1/(1-x)*(Sum_{k>=0} x^A001045(k)). EXAMPLE a(9)=5 because there are 5 Jacobsthal numbers <=9 (0,1,1,3 and 5). MATHEMATICA Table[1+Floor[Log[2, 3n+1]], {n, 0, 100}] (* Harvey P. Dale, Jul 03 2013 *) PROG (PARI) a(n)=logint(3*n+1, 2)+1 \\ Charles R Greathouse IV, Oct 03 2016 (MAGMA) [Ceiling(Log(3*n+2)/Log(2)): n in [0..30]]; // G. C. Greubel, Jan 08 2018 CROSSREFS For partial sums see A130252. Other related sequences A001045, A130249, A130250, A130253, A105348. Also A130233, A130235, A130241, A108852, A130245. Sequence in context: A303821 A240622 A130250 * A145288 A075324 A134993 Adjacent sequences:  A130250 A130251 A130252 * A130254 A130255 A130256 KEYWORD nonn,easy AUTHOR Hieronymus Fischer, May 20 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 20:23 EDT 2019. Contains 328197 sequences. (Running on oeis4.)