

A130249


Maximal index k of a Jacobsthal number such that A001045(k)<=n (the 'lower' Jacobsthal inverse).


13



0, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Inverse of the Jacobsthal sequence (A001045), nearly, since a(A001045(n))=n except for n=1 (see A130250 for another version). a(n)+1 is equal to the partial sum of the Jacobsthal indicator sequence (see A105348).


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000


FORMULA

a(n) = floor(log_2(3n+1)).
a(n) = A130250(n+1)  1 = A130253(n)  1.
G.f.: 1/(1x)*(Sum_{k>=1} x^A001045(k)).


EXAMPLE

a(12)=5, since A001045(5)=11<=12, but A001045(6)=21>12.


MATHEMATICA

Table[Floor[Log[2, 3*n + 1]], {n, 0, 50}] (* G. C. Greubel, Jan 08 2018 *)


PROG

(PARI) for(n=0, 30, print1(floor(log(3*n+1)/log(2)), ", ")) \\ G. C. Greubel, Jan 08 2018
(MAGMA) [Floor(Log(3*n+1)/Log(2)): n in [0..30]]; // G. C. Greubel, Jan 08 2018


CROSSREFS

For partial sums see A130251. Other related sequences A130250, A130253, A105348. A001045, A130233, A130241.
Sequence in context: A143489 A274102 A261100 * A286105 A061071 A122258
Adjacent sequences: A130246 A130247 A130248 * A130250 A130251 A130252


KEYWORD

nonn


AUTHOR

Hieronymus Fischer, May 20 2007


STATUS

approved



