login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130241 Maximal index k of a Lucas number such that Lucas(k) <= n (the 'lower' Lucas (A000032) Inverse). 23
1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Inverse of the Lucas sequence (A000032), nearly, since a(Lucas(n))=n for n>=1 (see A130242 and A130247 for other versions). For n>=2, a(n)+1 is equal to the partial sum of the Lucas indicator sequence (see A102460). Identical to A130247 except for n=2.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

FORMULA

a(n) = floor(log_phi((n+sqrt(n^2+4))/2))=floor(arcsinh(n/2)/log(phi)) where phi=(1+sqrt(5))/2.

a(n) = A130242(n+1)-1 for n>=2. a(n)=A130247(n) except for n=2.

G.f.: g(x)=1/(1-x)*sum{k>=1, x^Lucas(k)}.

a(n) = floor(log_phi(n+1/2)) for n>=2, where phi is the golden ratio.

EXAMPLE

a(10)=4, since Lucas(4)=7<=10 but Lucas(5)=11>10.

MATHEMATICA

Join[{1}, Table[Floor[Log[GoldenRatio, n + 1/2]], {n, 2, 50}]] (* G. C. Greubel, Dec 24 2017 *)

CROSSREFS

For partial sums see A130243. Other related sequences: A000032, A130242, A130245, A130247, A130249, A130255, A130259. Indicator sequence A102460. Fibonacci inverse see A130233 - A130240, A104162.

Sequence in context: A085423 A260998 * A130247 A209869 A087839 A106742

Adjacent sequences:  A130238 A130239 A130240 * A130242 A130243 A130244

KEYWORD

nonn

AUTHOR

Hieronymus Fischer, May 19 2007, Jul 02 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 27 01:03 EDT 2018. Contains 303149 sequences. (Running on oeis4.)