This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130068 Maximal power of 2 dividing the binomial coefficient binomial(m, 2^k) where m >= 1 and 1 <= 2^k <= m. 1
 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 3, 2, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 3, 2, 1, 0, 0, 3, 2, 1, 0, 1, 0, 2, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 3, 2, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Provided m and k are given, the sequence index n is n=A001855(m)+k+1. Ordered by m as rows and k as columns the sequence forms a sort of a logarithmically distorted triangle. a(n) is the maximal power of 2 dividing A130067(n). Equivalent propositions: (1) a(n)=0; (2) A130067(n) is odd; (3) the k-th digit of m is 1; (4) A030308(n)=1. LINKS FORMULA a(n)=g(m)-g(m-2^k) where g(x)=sum(floor(x/2^i), k

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 16:44 EDT 2019. Contains 327968 sequences. (Running on oeis4.)