

A130060


Primes p such that p^2 divides 3^p  2^p  1; or primes in A127074(n).


4




OFFSET

1,1


COMMENTS

The prime p divides 3^p  2^p  1. Quotients (3^p  2^p  1)/p, where p = Prime[n], are listed in A127071.  Alexander Adamchuk, Jan 31 2008
a(7) > 10^9. [From D. S. McNeil, Mar 16 2009]


LINKS

Table of n, a(n) for n=1..6.


MATHEMATICA

Do[ n=Prime[k]; f=PowerMod[3, n, n^2]  PowerMod[2, n, n^2]  1; If[ IntegerQ[ f/n^2 ], Print[n] ], {k, 1, 100000} ]


CROSSREFS

Cf. A127071, A127072, A127073, A127074 = numbers n such that n^2 divides 3^n  2^n  1. Cf. A130058, A130059, A130061, A130062, A130063.
Sequence in context: A103405 A087311 A053924 * A224894 A266269 A053942
Adjacent sequences: A130057 A130058 A130059 * A130061 A130062 A130063


KEYWORD

hard,more,nonn


AUTHOR

Alexander Adamchuk, May 05 2007


EXTENSIONS

2 more terms found by Ryan Propper, Jan 01 2008.
Incorrect a(7), a(8) removed by D. S. McNeil, Mar 16 2009. (The old version was 2,3,7,179,619,17807,135433,1376257.)


STATUS

approved



