OFFSET
0,2
COMMENTS
See the references and the W. Lang link under A129934.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..665
FORMULA
a(n) = denom(sum((((2*j)!/(j!^2))^2)*(1/2^(5*j)),j=0..n)), n>=0.
MATHEMATICA
Denominator[Table[Sum[(((2*k)!/(k!^2))^2)*(1/2^(5*k)), {k, 0, n}], {n, 0, 50}]] (* G. C. Greubel, Aug 17 2018 *)
PROG
(PARI) for(n=0, 50, print1(denominator(sum(k=0, n, (((2*k)!/(k!^2))^2)*(1/2^(5*k)))), ", ")) \\ G. C. Greubel, Aug 17 2018
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang Jun 01 2007
STATUS
approved