login
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+337)^2 = y^2.
5

%I #13 Feb 15 2020 10:52:27

%S 0,27,888,1011,1148,6027,6740,7535,35948,40103,44736,210335,234552,

%T 261555,1226736,1367883,1525268,7150755,7973420,8890727,41678468,

%U 46473311,51819768,242920727,270867120,302028555,1415846568,1578730083

%N Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+337)^2 = y^2.

%C Also values x of Pythagorean triples (x, x+337, y).

%C Corresponding values y of solutions (x, y) are in A159574.

%C For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.

%C lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).

%C lim_{n -> infinity} a(n)/a(n-1) = (339+26*sqrt(2))/337 for n mod 3 = {1, 2}.

%C lim_{n -> infinity} a(n)/a(n-1) = (278307+179662*sqrt(2))/337^2 for n mod 3 = 0.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,6,-6,0,-1,1).

%F a(n)=6*a(n-3)-a(n-6)+674 for n > 6; a(1)=0, a(2)=27, a(3)=888, a(4)=1011, a(5)=1148, a(6)=6027.

%F G.f.: x*(27+861*x+123*x^2-25*x^3-287*x^4-25*x^5) / ((1-x)*(1-6*x^3+x^6)).

%F a(3*k+1) = 337*A001652(k) for k >= 0.

%F a(0)=0, a(1)=27, a(2)=888, a(3)=1011, a(4)=1148, a(5)=6027, a(6)=6740, a(n)=a(n-1)+6*a(n-3)-6*a(n-4)-a(n-6)+a(n-7). - _Harvey P. Dale_, Feb 26 2015

%t LinearRecurrence[{1,0,6,-6,0,-1,1},{0,27,888,1011,1148,6027,6740},40] (* _Harvey P. Dale_, Feb 26 2015 *)

%o (PARI) {forstep(n=0, 500000000, [3, 1], if(issquare(2*n^2+674*n+113569), print1(n, ",")))}

%Y Cf. A159574, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159575 (decimal expansion of (339+26*sqrt(2))/337), A159576 (decimal expansion of (278307+179662*sqrt(2))/337^2).

%K nonn,easy

%O 1,2

%A _Mohamed Bouhamida_, Jun 15 2007

%E Edited and two terms added by _Klaus Brockhaus_, Apr 16 2009