Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #15 Jul 28 2022 09:23:22
%S 2,3,5,7,11,17,19,23,29,31,41,43,71,79,97,173,179,257,269,311,389,691,
%T 4957,8423,11801,14621,25621,26951,38993,75743,102031,191671,668869
%N Primes p such that the smallest integer whose sum of decimal digits is p is prime.
%F Primes p such that (p mod 9 + 1) * 10^[p/9] - 1 is prime. Therefore the sequence consists of primes of the forms A002957(k)*9+1, A056703(k)*9+2, A056712(k)*9+4, A056716(k)*9+5, A056721(k)*9+7, A056725(k)*9+8. [_Max Alekseyev_, Nov 09 2009]
%e The smallest integer whose sum of digits is 17 is 89; 89 is prime, therefore 17 is in the sequence.
%t Select[Prime[Range[1000]],PrimeQ[FromDigits[Join[{Mod[ #,9]},Table[9,{i,1,Floor[ #/9]}]]]] &]
%o (Python)
%o from itertools import islice
%o from sympy import isprime, nextprime
%o def A051885(n): return ((n%9)+1)*10**(n//9)-1 # from _Chai Wah Wu_
%o def agen(startp=2):
%o p = startp
%o while True:
%o if isprime(A051885(p)): yield p
%o p = nextprime(p)
%o print(list(islice(agen(), 23))) # _Michael S. Branicky_, Jul 27 2022
%Y Cf. A051885.
%Y Cf. A002957, A056703, A056712, A056716, A056721, A056725.
%K hard,more,nonn,base
%O 1,1
%A _J. M. Bergot_, Jun 14 2007
%E Edited, corrected and extended by _Stefan Steinerberger_, Jun 23 2007
%E Extended by _D. S. McNeil_, Mar 20 2009
%E Five more terms from _Max Alekseyev_, Nov 09 2009