login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triangular sequence based on A002301 and the alternating groups a prime -adic: t(n,m)=n!/Prime[m] for n>=Prime[m].
0

%I #3 Jan 19 2019 04:15:43

%S 1,3,2,12,8,60,40,24,360,240,144,2520,1680,1008,720,20160,13440,8064,

%T 5760,181440,120960,72576,51840,1814400,1209600,725760,518400,

%U 19958400,13305600,7983360,5702400,3628800,239500800,159667200,95800320,68428800

%N Triangular sequence based on A002301 and the alternating groups a prime -adic: t(n,m)=n!/Prime[m] for n>=Prime[m].

%C Alternating groups are: An->n!/2 for n>=2 If the tritonic or triple symmetric groups are: Tn->n!/3 for n>=4 Then the pentatonic would be: Pn->n!/5 for n>=5 General: ( triangular sequence) G(m)n=n!/Prime[m] for n>=Prime[m]

%F t(n,m)=n!/Prime[m] for n>=Prime[m]

%e {1},

%e {3, 2},

%e {12, 8},

%e {60, 40, 24},

%e {360, 240, 144},

%e {2520, 1680, 1008, 720},

%e {20160, 13440, 8064, 5760},

%e {181440, 120960, 72576, 51840},

%e {1814400, 1209600, 725760, 518400},

%t g[n_, m_] = If[n >= Prime[m], n!/Prime[m], {}]; a = Table[Flatten[Table[g[n, m], {m, 1, n}]], {n, 1, 23}]; Flatten[a]

%Y Cf. A002301.

%K nonn,tabl,uned

%O 1,2

%A _Roger L. Bagula_, Jun 06 2007