login
Number of reverse alternating fixed-point-free permutations on n letters.
4

%I #11 Aug 24 2023 11:54:10

%S 0,0,1,2,6,22,102,506,2952,18502,131112,991226,8271792,73176262,

%T 703077552,7121578106,77437418112,883521487942,10726837356672,

%U 136104948161786,1825110309733632

%N Number of reverse alternating fixed-point-free permutations on n letters.

%C From _Emeric Deutsch_, Aug 06 2009: (Start)

%C Reverse alternating permutations are called also up-down permutations.

%C a(n) is also the number of reverse alternating permutations having exactly 1 fixed point (see the Stanley reference). Example: a(4)=2 because we have 1423 and 2314.

%C (End)

%H R. P. Stanley, <a href="https://arxiv.org/abs/math/0603520">Alternating permutations and symmetric functions</a>, arXiv:math/0603520 [math.CO], 2006.

%F a(2n-1) = A129817(2n-1). [_Emeric Deutsch_, Aug 06 2009]

%e a(4)=2 because we have 3412 and 2413. [_Emeric Deutsch_, Aug 06 2009]

%Y Cf. A000111, A000166, A007779, A129817.

%K more,nonn

%O 1,4

%A _Vladeta Jovovic_, May 20 2007

%E a(21) from _Alois P. Heinz_, Jun 11 2015