login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129814 a(n) = Bernoulli(n) * (n+1)!. 6
1, -1, 1, 0, -4, 0, 120, 0, -12096, 0, 3024000, 0, -1576143360, 0, 1525620096000, 0, -2522591034163200, 0, 6686974460694528000, 0, -27033456071346536448000, 0, 160078872315904478576640000, 0, -1342964491649083924630732800000, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

From Peter Luschny, Apr 21 2009: (Start)

Reading A137777 and A159749 as a triangular sequence:

2*a(n) = A137777(n, 0) for n > 0.

2*a(n) = (-1)^n*A159749(n, 0) for n >= 0. (End)

LINKS

Table of n, a(n) for n=0..25.

Eric Weisstein's World of Mathematics, Bernoulli Number

Eric Weisstein's World of Mathematics, Polygamma Function

FORMULA

a(2*n) = A001332(n).

E.g.f.: -2 x - psi_2(1/x) / x^2, where psi_n(z) is the polygamma function, psi_n(z) = (d/dz)^{n+1} log(Gamma(z)). - Vladimir Reshetnikov, Apr 24 2013

MATHEMATICA

Table[BernoulliB[n](n+1)!, {n, 0, 30}] (* Harvey P. Dale, Jan 18 2013 *)

Table[SeriesCoefficient[-2 x - PolyGamma[2, 1/x] / x^2, {x, 0, n}, Assumptions -> x > 0] n!, {n, 0, 30}] (* Vladimir Reshetnikov, Apr 24 2013 *)

PROG

(PARI) {for(n=0, 25, print1(bernfrac(n)*(n+1)!, ", "))}

(PARI) {a(n) = if( n<0, 0, (n + 1)! * bernfrac( n))} /* Michael Somos, Mar 29 2011 */

(MAGMA) [Bernoulli(n) * Factorial(n+1): n in [0..100]]; // Vincenzo Librandi, Mar 29 2011

CROSSREFS

Cf. A001332.

Sequence in context: A247119 A228557 A013037 * A129825 A267441 A264883

Adjacent sequences:  A129811 A129812 A129813 * A129815 A129816 A129817

KEYWORD

sign,easy

AUTHOR

Paul Curtz, May 20 2007

EXTENSIONS

Edited and extended by Klaus Brockhaus, May 28 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 17 21:22 EDT 2017. Contains 290656 sequences.