%I #26 Mar 13 2022 05:47:40
%S 1,1,1,0,7,2165,91846374
%N Number of main classes of Graeco-Latin squares of order n. That is, species of pairs of orthogonal Latin squares.
%H J. Egan and I. M. Wanless, <a href="http://dx.doi.org/10.1090/mcom/3010">Enumeration of MOLS of small order</a>, Mathematics of Computation 85, 2016, 799-824.
%H B. D. McKay, <a href="http://users.cecs.anu.edu.au/~bdm/data/latin.html">Latin squares</a>.
%H I. Wanless, <a href="http://users.monash.edu.au/~iwanless/data/MOLS/">Data on mutually orthogonal Latin squares (MOLS)</a>.
%e The unique example for n=3 has two Latin squares [[0, 2, 1], [2, 1, 0], [1, 0, 2]] and [[0, 2, 1], [1, 0, 2], [2, 1, 0]].
%Y Cf. A003090, A266166, A266167, A266168, A266169, A266170, A266171, A266172, A266173.
%K hard,more,nice,nonn
%O 3,5
%A _Brendan McKay_, May 13 2007
%E a(9) by Egan and Wanless added by _Janne I. Kokkala_, Sep 08 2015