login
A129727
Primes p for which the period length of 1/p is a semiprime.
2
7, 13, 23, 31, 43, 47, 59, 67, 71, 101, 103, 139, 167, 179, 191, 263, 277, 283, 293, 311, 383, 431, 439, 443, 503, 547, 557, 599, 607, 613, 653, 683, 787, 809, 827, 853, 859, 863, 887, 947, 983, 997, 1013, 1019, 1039, 1163, 1213, 1237, 1321, 1367, 1399, 1423
OFFSET
1,1
COMMENTS
The prime index of A122183. Semiprime analog of A072859 = primes p for which the period length of 1/p is prime. Based upon A002371 = period of decimal expansion of 1/(n-th prime).
LINKS
EXAMPLE
a(1) = 7 because A000040(4) Period of decimal expansion of 1/7 = 6 = 2*3, a semiprime.
a(2) = 13 because A000040(6) = 6 = 2*3.
a(3) = 23 because A000040(9) = 22 = 2*11.
a(4) = 31 because A000040(11) = 15 = 3*5.
a(5) = 43 because A000040(14) = 21 = 3*7.
a(6) = 47 because A000040(15) = 46 = 2*23.
a(7) = 59 because A000040(17) = 58 = 2*29.
MATHEMATICA
fQ[p_] := Plus @@ Last /@ FactorInteger@Length@RealDigits[1/p][[1, 1]] == 2;; lst = {}; Do[ p = Prime@n; If[ fQ@p, AppendTo[lst, p]], {n, 230}] (* Robert G. Wilson v *)
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, May 12 2007
STATUS
approved