login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129666 Expansion of unique cusp form of weight 4 level 7 in powers of q. 1
1, -1, -2, -7, 16, 2, -7, 15, -23, -16, -8, 14, 28, 7, -32, 41, 54, 23, -110, -112, 14, 8, 48, -30, 131, -28, 100, 49, -110, 32, 12, -161, 16, -54, -112, 161, -246, 110, -56, 240, 182, -14, 128, 56, -368, -48, 324, -82, 49, -131, -108, -196, -162, -100, -128 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

H. Rosson and G. Tornaria, Central values of quadratic twists for a modular form of weight 4, pp. 315-321 of J. B. Conrey et al., ed., Ranks of Elliptic Curves and Random Matrix Theory, Cambridge University Press, 2007.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Mathieu Lemire and Kenneth S. Williams, Evaluation of two convolution sums involving the sum of divisors function, Bulletin of the Australian Mathematical Society, Volume 73, Issue 1 February 2006, pp. 107-115. See c7() p. 108.

LMFDB, Newforms of weight 4 on Gamma_0(7).

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q * phi(-q)^3 * psi(q) * phi(-q^7)^3 * psi(q^7) + 4*q^2 * (phi(-q) * psi(q) * phi(-q^7) * psi(q^7))^2 in powers of q.

Expansion of ((eta(q) * eta(q^7))^3 + 4 * (eta(q^2) * eta(q^14))^3) * (eta(q) * eta(q^7))^2 / (eta(q^2) * eta(q^14)) in powers of q.

a(n) is multiplicative with a(7^e) = (-7)^e, a(p^e) = a(p) * a(p^(e-1)) - p^3 * a(p^(e-2)).

G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 49 (t/i)^4 f(t) where q = exp(2 Pi i t).

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u^2 + 2*u*v + 16*u*w + 12*v^2 + 32*v*w + 256*w^2) * (-v^3 + 2*w*u*v + w*u^2 + 16*w^2*u) + 2*v^5.

Convolution of A002652 and A002656.

EXAMPLE

G.f. = q - q^2 - 2*q^3 - 7*q^4 + 16*q^5 + 2*q^6 - 7*q^7 + 15*q^8 - 23*q^9 - ...

MATHEMATICA

a[ n_] := With[ {A1 = QPochhammer[ q] QPochhammer[ q^7], A2 = QPochhammer[ q^2] QPochhammer[ q^14]}, SeriesCoefficient[  (A1^3 + 4 q A2^3) A1^2 / A2, {q, 0, n}]]; (* Michael Somos, Nov 11 2015 *)

PROG

(PARI) {a(n) = my(A, A1, A2); if( n<1, 0, n--; A = x * O(x^n); A1 = eta(x + A) * eta(x^7 + A); A2 = eta(x^2 + A) * eta(x^14 + A); polcoeff( (A1^3 + 4*x * A2^3) * A1^2 / A2, n))};

(Sage) CuspForms( Gamma0(7), 4, prec=55).0; # Michael Somos, May 28 2013

(MAGMA) Basis( CuspForms( Gamma0(7), 4), 56)[1]; /* Michael Somos, Nov 11 2015 */

CROSSREFS

Cf. A002652, A002656.

Sequence in context: A120110 A047694 A262016 * A288675 A135781 A233580

Adjacent sequences:  A129663 A129664 A129665 * A129667 A129668 A129669

KEYWORD

sign,mult

AUTHOR

Michael Somos, Apr 27 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 04:31 EST 2019. Contains 329850 sequences. (Running on oeis4.)