This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129508 Numbers n such that 3 and 5 do not divide binomial(2n,n). 6
 0, 1, 10, 12, 27, 30, 31, 36, 37, 252, 255, 256, 280, 282, 756, 757, 760, 810, 811, 3160, 3162, 3186, 3187, 3250, 3252, 3276, 3277, 3280, 6561, 6562, 6885, 6886, 6912, 6925, 7536, 7537, 7560, 7561, 7626, 7627, 7650, 7651, 19686, 19687, 20007, 20010, 20011 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The Erdos paper proves that for any two odd primes p and q, there are an infinite number of n for which gcd(p*q,binomial(2n,n))=1; i.e., p and q do not divide binomial(2n,n). LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 P. Erdos, R. L. Graham, I. Z. Russa and E. G. Straus, On the prime factors of C(2n,n), Math. Comp. 29 (1975), 83-92. FORMULA Intersection of A005836 and A037453. MATHEMATICA lim=10000; Intersection[Table[FromDigits[IntegerDigits[k, 2], 3], {k, 0, lim}], Table[FromDigits[IntegerDigits[k, 3], 5], {k, 0, lim}]] PROG (PARI) valp(n, p)=my(s); while(n\=p, s+=n); s is(n)=valp(2*n, 3)==2*valp(n, 3) && valp(2*n, 5)==2*valp(n, 5) \\ Charles R Greathouse IV, Feb 03 2016 CROSSREFS Cf. A030979 (n such that 3, 5 and 7 do not divide binomial(2n, n)). Sequence in context: A140972 A108901 A073083 * A015728 A080470 A087217 Adjacent sequences:  A129505 A129506 A129507 * A129509 A129510 A129511 KEYWORD nonn AUTHOR T. D. Noe, Apr 18 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.