login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Digital sum of the 2^n-th partition number.
1

%I #13 Sep 21 2024 02:27:50

%S 1,2,5,4,6,24,22,34,83,120,152,145,286,477,561,796,1271,1639,2471,

%T 3598,5114,7221,10283,14315,20585,29110,40890,58834,82319,115690,

%U 164128,232044,328463,462853,657811,927235,1311605,1855787,2629927,3708205

%N Digital sum of the 2^n-th partition number.

%C For the same sequence but for base 10 (A070177): 1,6,43,143,471,1511,4959,15914,49580,158148,501883,1582908,5014367,....

%F a(n) = A007953(A000041(A000079(n))) = A007953(A068413(n)).

%F a(n) =~ 9*A129490(n)/2.

%e a(9) = 120 since P(2^9) = 4453575699570940947378 and 4+4+5+3+5+7+5+6+9+9+5+7+0+9+4+0+9+4+7+3+7+8 = 120.

%t f[n_] := Plus @@ IntegerDigits @PartitionsP[2^n]; Table[ f@n, {n, 0, 42}]

%Y Cf. A000041, A000079, A007953, A068413, A129490.

%K base,nonn

%O 0,2

%A _Robert G. Wilson v_, Apr 12 2007

%E Offset corrected by _Alois P. Heinz_, Sep 20 2024