OFFSET
0,3
COMMENTS
a(n) is also the number of ordered submultisets of A000707. - J. M. Bergot, Aug 13 2016
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..150
FORMULA
a(n) ~ c * n^n, where c = 0.660942456683588459181273625114230472913... . - Vaclav Kotesovec, Feb 10 2015
EXAMPLE
a(2) = [x^2] 2!*(1)*(1+x)*(1+x+x^2/2!) = [x^2] (2 +4*x +3*x^2 +x^3) = 3.
a(3) = [x^3] 3!*(1)*(1+x)*(1 + x + x^2/2!)*(1 + x + x^2/2! + x^3/3!) =
[x^3] (6 + 18*x + 24*x^2 + 19*x^3 +...) = 19.
MATHEMATICA
Flatten[{1, Table[Coefficient[Expand[n!*Product[Sum[x^j/j!, {j, 0, k}], {k, 0, n}]], x^n], {n, 1, 20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
PROG
(PARI) {a(n)=n!*polcoeff(prod(k=0, n, sum(j=0, k, x^j/j!)+x*O(x^n)), n)}
(Magma)
m:=30; R<x>:=PowerSeriesRing(Integers(), m+2);
p:= func< n, x | (&*[ (&+[x^j/Factorial(j): j in [0..k]]) : k in [0..n]]) >;
A129481:= func< n | Coefficient(R!(Laplace( p(n, x) )), n) >;
[A129481(n): n in [0..m]]; // G. C. Greubel, Feb 12 2024
(SageMath)
def p(n, x): return product(sum(x^j/factorial(j) for j in range(k+1)) for k in range(n+1))
def A129481(n): return factorial(n)*( p(n, x) ).series(x, 101).list()[n]
[A129481(n) for n in range(31)] # G. C. Greubel, Feb 13 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 17 2007
STATUS
approved