This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129447 Expansion of psi(q) * psi(q^3) * phi(q^3) / phi(q) in powers of q where psi(), phi() are Ramanujan theta functions. 5
 1, -1, 2, 0, 1, 0, 2, -2, 2, 0, 0, 0, 3, -1, 2, 0, 0, 0, 2, -2, 2, 0, 2, 0, 1, -2, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, -3, 0, 0, 1, 0, 4, -2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, -2, 2, 0, 2, 0, 1, -2, 4, 0, 0, 0, 0, -2, 2, 0, 0, 0, 4, -1, 2, 0, 2, 0, 2, -2, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(-1/2) * eta(q) * eta(q^4)^2 * eta(q^6)^7 / (eta(q^2)^3 * eta(q^3)^3 * eta(q^12)^2) in powers of q. Euler transform of period 12 sequence [ -1, 2, 2, 0, -1, -2, -1, 0, 2, 2, -1, -2, ...]. a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = e+1 if p == 1 (mod 4), b(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4). G.f.: Product_{k>0} (1 + x^(2*k))^2 * (1 - x^(3*k))^2 * (1 + x^(3*k))^5 / ((1 + x^k) * (1 + x^(6*k))^2). G.f.: Sum_{k in Z} x^(3*k) / (1 + x^(6*k + 1)) = Sum_{k>0} x^(k-1) * (1 - x^(2*k -1))^2 / (1 + x^(6*k - 3)). abs(a(n) = A125079(n). a(6*n + 3) = a(6*n + 5) = 0. a(6*n) = A002175(n). a(2*n) = A008441(n). a(6*n + 1) = - A008441(n). a(6*n + 2) = 2* A121444(n). EXAMPLE G.f. = 1 - x + 2*x^2 + x^4 + 2*x^6 - 2*x^7 + 2*x^8 + 3*x^12 - x^13 + 2*x^14 + ... G.f. = q - q^3 + 2*q^5 + q^9 + 2*q^13 - 2*q^15 + 2*q^17 + 3*q^25 - q^27 + ... MATHEMATICA a[ n_] := If[ n < 0, 0, Module[ {m = n}, If[ Mod[n, 6] == 1, m = Quotient[ n, 3]; -1, 1] DivisorSum[ 2 m + 1, KroneckerSymbol[ -4, #] &]]]; (* Michael Somos, Nov 11 2015 *) a[ n_] := If[ n < 0, 0, Times @@ (Which[# == 1, 1, # == 2, 0, # == 3, (-1)^#2, Mod[#, 4] == 1, #2 + 1, True, Mod[#2 + 1, 2]] & @@@ FactorInteger[2 n + 1])]; (* Michael Somos, Nov 11 2015 *) PROG (PARI) {a(n) = if( n<0, 0, if( n%6==1, n\=3; -1, 1) * sumdiv(2*n + 1, d, kronecker(-4, d)) )}; (PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, (-1)^e, p%4==1, e+1, 1-e%2 )))}; CROSSREFS Cf. A002175, A008441, A121444, A125079. Sequence in context: A036579 A139353 A029397 * A125079 A329027 A235987 Adjacent sequences:  A129444 A129445 A129446 * A129448 A129449 A129450 KEYWORD sign AUTHOR Michael Somos, Apr 16 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)