login
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, floor((n-k)/2)).
2

%I #8 Feb 03 2024 16:17:38

%S 1,1,3,5,11,19,39,71,141,261,513,965,1889,3585,7017,13417,26287,50527,

%T 99147,191399,376155,728619,1434051,2785667,5489823,10689199,21089799,

%U 41146383,81262983,158818311,313935831,614469591,1215549981

%N a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, floor((n-k)/2)).

%C Partial sums of A129383.

%H G. C. Greubel, <a href="/A129384/b129384.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: (g(x) - x*g(x^2))/(1-x), where g(x) is the g.f. of A001405.

%F a(n) = Sum_{k=floor((n+1)/2)..n} binomial(k, floor(k/2)).

%t Table[Sum[Binomial[n-k,Floor[(n-k)/2]],{k,0,Floor[n/2]}],{n,0,40}] (* _Harvey P. Dale_, Aug 21 2021 *)

%o (Magma)

%o A129384:= func< n | (&+[Binomial(n-k, Floor((n-k)/2)): k in [0..Floor(n/2)]]) >;

%o [A129384(n): n in [0..40]]; // _G. C. Greubel_, Feb 03 2024

%o (SageMath)

%o def A129384(n): return sum(binomial(n-k,(n-k)//2) for k in range((n+2)//2))

%o [A129384(n) for n in range(41)] # _G. C. Greubel_, Feb 03 2024

%Y Cf. A001405, A129383.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Apr 12 2007