This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129362 a(n) = sum{k=floor((n+1)/2)..n, J(k+1)}, J(n) = A001045(n). 3
 1, 1, 4, 8, 19, 37, 80, 160, 331, 661, 1344, 2688, 5419, 10837, 21760, 43520, 87211, 174421, 349184, 698368, 1397419, 2794837, 5591040, 11182080, 22366891, 44733781, 89473024, 178946048, 357903019, 715806037 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,3,-1,0,-2,-4) FORMULA G.f.: (1+2x^3)/((1-x-2x^2)(1-x^2-2x^4)). a(n) = a(n-1) + 3a(n-2) - a(n-3) - 2a(n-5) - 4a(n-6). a(n) = sum{k=0..floor(n/2), J(n-k+1)}. a(n) = sum{k=0..n, J(k+1)-J((k+1)/2)(1-(-1)^k)/2}. a(n) = sum{k=0..n, J(k+1)}-sum{k=0..floor((n-1)/2), J(k+1)}. MATHEMATICA LinearRecurrence[{1, 3, -1, 0, -2, -4}, {1, 1, 4, 8, 19, 37}, 30] (* Harvey P. Dale, Oct 22 2011 *) CROSSREFS Cf. A129361. Sequence in context: A130887 A049933 A163318 * A083579 A215112 A265108 Adjacent sequences:  A129359 A129360 A129361 * A129363 A129364 A129365 KEYWORD easy,nonn AUTHOR Paul Barry, Apr 11 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.