Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #8 Mar 18 2014 16:50:03
%S 245,333,330,462,539,647,888,1036,1177,1445,1722,1990,2311,2672,3047,
%T 3492,4093,4613,5138,5718,6379,7123,7952,8676,9537,10393,11558,12602,
%U 13743,14863,16252,17528,18957,20481,22042,23678,25347,27207,29092
%N Largest number not the sum of n distinct nonzero squares.
%C Halter-Koch essentially finds (5)-a(12) (with a coprimality condition, but Bateman, Hildebrand, & Purdy show that this can be dropped). - _Charles R Greathouse IV_, Mar 18 2014
%H T. D. Noe, <a href="/A129210/b129210.txt">Table of n, a(n) for n = 5..400</a> (from Bateman et al.)
%H Paul T. Bateman, Adolf J. Hildebrand, and George B. Purdy, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa67/aa6745.pdf">Sums of distinct squares</a>, Acta Arithmetica 67 (1994), pp. 349-380.
%H Franz Halter-Koch, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa42/aa4212.pdf">Darstellung natürlicher Zahlen als Summe von Quadraten</a>, Acta Arithmetica 42 (1982), pp. 11-20.
%Y Cf. A120951 (numbers that are not the sum of 5 distinct nonzero squares).
%K nonn
%O 5,1
%A _T. D. Noe_, Apr 03 2007