login
A129210
Largest number not the sum of n distinct nonzero squares.
3
245, 333, 330, 462, 539, 647, 888, 1036, 1177, 1445, 1722, 1990, 2311, 2672, 3047, 3492, 4093, 4613, 5138, 5718, 6379, 7123, 7952, 8676, 9537, 10393, 11558, 12602, 13743, 14863, 16252, 17528, 18957, 20481, 22042, 23678, 25347, 27207, 29092
OFFSET
5,1
COMMENTS
Halter-Koch essentially finds (5)-a(12) (with a coprimality condition, but Bateman, Hildebrand, & Purdy show that this can be dropped). - Charles R Greathouse IV, Mar 18 2014
LINKS
T. D. Noe, Table of n, a(n) for n = 5..400 (from Bateman et al.)
Paul T. Bateman, Adolf J. Hildebrand, and George B. Purdy, Sums of distinct squares, Acta Arithmetica 67 (1994), pp. 349-380.
Franz Halter-Koch, Darstellung natürlicher Zahlen als Summe von Quadraten, Acta Arithmetica 42 (1982), pp. 11-20.
CROSSREFS
Cf. A120951 (numbers that are not the sum of 5 distinct nonzero squares).
Sequence in context: A157246 A186460 A171994 * A137521 A257781 A188239
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 03 2007
STATUS
approved