This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129183 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n such that the sum of the height of the peaks is k (n>=0; n<=k<=floor((n+1)^2/4)). 2
 1, 0, 1, 0, 0, 2, 0, 0, 0, 4, 1, 0, 0, 0, 0, 8, 4, 2, 0, 0, 0, 0, 0, 16, 12, 9, 4, 1, 0, 0, 0, 0, 0, 0, 32, 32, 30, 20, 12, 4, 2, 0, 0, 0, 0, 0, 0, 0, 64, 80, 88, 73, 56, 34, 20, 9, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 128, 192, 240, 232, 206, 156, 116, 72, 46, 24, 12, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Row n has 1+floor((n+1)^2/4) terms, the first n of which are equal to 0. Row sums yield the Catalan numbers (A000108). T(n,n)=2^(n-1)=A011782(n)=A000079(n-1) for n>=1. Sum(k*T(n,k),k>=0)=4^(n-1)=A000302(n-1). Also number of parallelogram polyominoes of semiperimeter n+1 and having area equal to k. Example: T(3,4)=1 because the square with side 2 is the only parallelogram polyomino with semiperimeter 4 and area 4. - Emeric Deutsch, Apr 07 2007 REFERENCES M. P. Delest and J. M. Fedou, Counting polyominoes using attribute grammars, Lecture Notes in Computer Science, vol. 461, pp. 46-60, Springer, Berlin, 1990. M. P. Delest and J. M. Fedou, Attribute grammars are useful for combinatorics, Theor. Comp. Sci., 98, 1992, 65-76. M. P. Delest and J. M. Fedou, Enumeration of skew Ferrers diagrams, Discrete Math., 112, 1993, 65-79. LINKS FORMULA G.f.=G(t,z)=H(t,1,z), where H(t,x,z)=1+z[H(t,tx,z)-1+tx]H(t,x,z) (H(t,x,z) is the trivariate g.f. for Dyck paths according to sum of the height of the peaks, number of peaks and semilength, marked by t,x and z, respectively). EXAMPLE T(4,5)=4 because we have UDUUDUDD, UUDUDDUD, UUDUUDDD and UUUDDUDD. Triangle starts: 1; 0,1; 0,0,2; 0,0,0,4,1; 0,0,0,0,8,4,2; 0,0,0,0,0,16,12,9,4,1; MAPLE H:=1/(1-z*h[1]+z-z*t*x): for n from 1 to 11 do h[n]:=1/(1-z*h[n+1]+z-z*t^(n+1)*x) od: h[12]:=0: x:=1: G:=simplify(H): Gser:=simplify(series(G, z=0, 11)): for n from 0 to 9 do P[n]:=sort(coeff(Gser, z, n)) od: for n from 0 to 9 do seq(coeff(P[n], t, j), j=0..floor((n+1)^2/4)) od; # yields sequence in triangular form CROSSREFS Cf. A000108, A011782, A000079, A000302. Sequence in context: A100951 A190608 A011991 * A181566 A110173 A131427 Adjacent sequences:  A129180 A129181 A129182 * A129184 A129185 A129186 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Apr 07 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .