login
A129117
Numbers that appear exactly five times in A101402. (Also indices of fives in A101403.).
3
727, 2181, 3635, 5089, 6543, 7997, 9451, 10905, 12358, 13812, 15266, 16720, 18174, 19628, 21082, 22536, 23989, 25443, 26897, 28351, 29805, 31259, 32713, 34167, 35620, 37074, 38528, 39982, 41436, 42890, 44344, 45798, 47250, 48704, 50158
OFFSET
1,1
COMMENTS
It is also interestng to look at this sequence modulo 727.
LINKS
FORMULA
A101403(a(n)) = 5.
EXAMPLE
a(1) = 727 since A101402(2045) = A101402(2046) = A101402(2047) = A101402(2048) = A101402(2049) = 727.
a(1) = 727 since A101403(727) = 5.
MATHEMATICA
A101402[0] = 0; A101402[1] = 1; A101402[n_] := A101402[n] = A101402[2^(Floor[Log[2, n - 1]])] + A101402[n - 1 - 2^(Floor[Log[2, n - 1]])]; TheList = Table[A101402[i], {i, 0, 203000}]; TheList2 = Union[TheList]; A101403 = Table[Count[TheList, i], {i, 0, Last[TheList]}]; TheSeq = Delete[Union[Table[ If[TheList[[i]] == TheList[[i + 4]], TheList[[i]]], {i, 1, Length[TheList] - 4}]], -1] Count[A101403, 5] Length[TheSeq]
PROG
(Haskell)
import Data.List (elemIndices)
a129117 n = a129117_list !! (n-1)
a129117_list = elemIndices 5 a101403M_list
-- Reinhard Zumkeller, Aug 28 2014
CROSSREFS
Sequence in context: A052234 A103170 A153215 * A158394 A038600 A157430
KEYWORD
easy,nonn
AUTHOR
Keith Schneider (schneidk(AT)email.unc.edu), May 25 2007
STATUS
approved