%I #17 Sep 16 2024 12:00:17
%S 1,3,5,11,13,23,29,51,53,79,89,135,141,199,221,323,325,431,457,615,
%T 625,803,849,1119,1125,1407,1465,1863,1885,2327,2429,3075,3077,3727,
%U 3833,4695,4721,5635,5793,7023,7033,8283,8461,10067,10113,11811,12081,14319
%N A bisection of A129095: a(n) = A129095(2n-1) for n>=1.
%C b(n)=A129095(n) obeys the recurrence: b(n) = b(n/2) (n even), b(n) = 2*b(n-1) + b(n-2) (n odd >1), with b(1) = 1.
%H Michael De Vlieger, <a href="/A129096/b129096.txt">Table of n, a(n) for n = 1..10000</a>
%H William J. Keith and Augustine O. Munagi, <a href="https://arxiv.org/abs/1912.11148">Binary compositions and semi-Pell compositions</a>, arXiv:1912.11148 [math.CO], 2019.
%H William J. Keith and Augustine O. Munagi, <a href="https://hosted.math.rochester.edu/ojac/vol18/276.pdf">Power compositions and semi-Pell compositions</a>, Univ. Rochester, Online J. Analytic Comb. (2023) Issue 18, Art No. 2. See p. 2.
%t With[{s = Nest[Append[#1, If[EvenQ[#2], #1[[#2/2]], 2 #1[[-1]] + #1[[-2]] ] ] & @@ {#, Length@ # + 1} &, {1}, 192]}, Table[s[[i]], {i, 1, Floor[Length[s]/2], 2}]] (* _Michael De Vlieger_, Mar 10 2020 *)
%Y Cf. A129095, A129097, A129098, A129099.
%K easy,nonn
%O 1,2
%A _Paul D. Hanna_, Apr 11 2007