login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129081 Primes appearing in partial sums of A030433 (primes ending in 9). 3
19, 107, 523, 1279, 1787, 4091, 16103, 18041, 46889, 68437, 104561, 155443, 161641, 174367, 187573, 303473, 330587, 359231, 419929, 430517, 634793, 878939, 974507, 1469753, 1510319, 1700851, 1902653, 2836961, 2982841, 3476299, 3807589 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..3000

FORMULA

a(n) = A030433(1)+A030433(2)+...+A030433(x); a is a prime number.

EXAMPLE

a(5) = 1787 because 1787 = A030433(1) + A030433(2) + A030433(3) + A030433(4) + A030433(5) + A030433(6) + A030433(7) + A030433(8) + A030433(9) + A030433(10) + A030433(11) + A030433(12) + A030433(13) = 19 + 29 + 59 + 79 + 89 + 109 + 139 + 149 + 179 + 199 + 229 + 239 + 269; and 1787 is a prime number.

MATHEMATICA

With[{pr9s=Select[Prime[Range[3000]], Last[IntegerDigits[#]]==9&]}, Select[ Accumulate[ pr9s], PrimeQ]] (* Harvey P. Dale, Dec 31 2011 *)

PROG

(PARI) {s=0; forprime(p=2, 17300, if(p%10==9, s+=p; if(isprime(s), print1(s, ", "))))} /* Klaus Brockhaus, May 13 2007 */

(GAP) P:=Filtered(List([1..5*10^5], n->10*n+9), IsPrime);;

a:=Filtered(List([1..Length(P)], i->Sum([1..i], k->P[k])), IsPrime); # Muniru A Asiru, Apr 28 2018

CROSSREFS

Cf. A030433, A000040.

Sequence in context: A300644 A142300 A238108 * A282324 A264825 A142322

Adjacent sequences:  A129078 A129079 A129080 * A129082 A129083 A129084

KEYWORD

easy,base,nonn

AUTHOR

Tomas Xordan, May 11 2007

EXTENSIONS

Entries checked by Klaus Brockhaus, May 13 2007

Better description from Harvey P. Dale, Dec 31 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 01:33 EST 2019. Contains 329349 sequences. (Running on oeis4.)