This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129067 Leading term in row n of triangle in A128894. 0
 3, 8, 14, 28, 52, 78, 133, 190, 248, 484 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The building exceptional group symmetry sequence in Cartan notation is (Deligne-Landsberg): {A1,A2,G2,D4,F4,E6,E7,E7.5,E8,E9} E9 seems to be closer to an E9.5. For a universe which is E8 symmetry to have evolved, there had to be a metastable (explosive) higher energy/ higher temperature state E9. REFERENCES J. M. Landsberg, The sextonions and E_{7 1/2} (with L.Manivel) (Advances in Math 201(2006) p143 - 179) page 22 LINKS FORMULA T(a,n) =(3*a + 2*k + 5)*binomial[k + 2*a + 3, k]*binomial[ k + 5*a/2 + 3, k]*binomial[k + 3*a + 4, k]/((3*a + 5)*binomial[k + a/2 + 1, k]*binomial[k + a + 1, k]) b = Table[Table[g[a[[n]], k], {k, 1, n}], {n, 1, Length[a]}]; k=1 T[n,1] MATHEMATICA (*A128894*) (*http : // www.math.tamu.edu/~jml /: The sextonions and E_{7 1/2} (with L.Manivel) (Advances in Math 201(2006) p143 - 179) : http : // www.math.tamu.edu/~jml/LMsexpub.pdf : page 22*) a = {-4/3, -1, -2/3, 0, 1, 2, 4, 6, 8, 16}; g[a_, k_] := (3*a + 2*k + 5)*Binomial[k + 2*a + 3, k]* Binomial[k + 5*a/2 + 3, k]*Binomial[k + 3*a + 4, k]/((3*a + 5)*Binomial[k + a/2 + 1, k]*Binomial[k + a + 1, k]) b = Table[g[a[[n]], 1], {n, 1, Length[a]}] CROSSREFS Cf. A128894, A109161, A129024, A129025. Sequence in context: A123329 A268191 A169929 * A298612 A168155 A005735 Adjacent sequences:  A129064 A129065 A129066 * A129068 A129069 A129070 KEYWORD nonn,fini,full,uned AUTHOR Roger L. Bagula, May 11 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 00:17 EDT 2019. Contains 327252 sequences. (Running on oeis4.)