OFFSET
0,5
COMMENTS
For v >= 1 the orthogonal polynomials p(n,v,x) have v integer zeros k*(k-1), k = 1..v, for every n >= v.
Coefficients of p(n,v=1,x) (in the quoted Bruschi, et al., paper p(nu, n)(x) of eqs. (4) and (8a),(8b)) in increasing powers of x.
The v-family p(n,v,x) consists of characteristic polynomials of the tridiagonal M x M matrix V=V(M,v) with entries V_{m,n} given by v*(v-1) - (m-1)^2 - (v-m)^2 if n=m, m=1,...,M; (m-1)^2 if n=m-1, m=2,...,M; (v-m)^2 if n=m+1, m=1..M-1 and 0 else. p(n,v,x) := det(x*I_n - V(n,v) with the n-dimensional unit matrix I_n.
p(n,v=1,x) has, for every n >= 1, a zero for x=0, i.e., det(V(n,1))=0 for every n >= 1. This is obvious.
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
M. Bruschi, F. Calogero and R. Droghei, Proof of certain Diophantine conjectures and identification of remarkable classes of orthogonal polynomials, J. Physics A, 40(2007), pp. 3815-3829.
Wolfdieter Lang, First ten rows.
FORMULA
T(n,m) = [x^m] p(n,1,x), n >= 0, with the three-term recurrence for orthogonal polynomial systems of the form p(n,v,x) = (x + 2*(n-1)^2 - 2*(v-1)*(n-1) - v+1)*p(n-1,v,x) - (n-1)^2*(n-1-v)^2*p(n-2,v,x), n >= 1; p(-1,v,x)=0 and p(0,v,x)=1. Put v=1 here.
Recurrence: T(n,m) = T(n-1,m-1) + (2*(n-1)^2 - 2*(v-1)*(n-1) - v + 1)*T(n-1,m) - ((n-1)^2*(n-1-v)^2)*T(n-2, m); T(n,m)=0 if n < m, T(-1,m):=0, T(0,0)=1, T(n,-1)=0. Put v=1 here.
Sum_{k=0..n} T(n, k) = A129458(n) (row sums).
EXAMPLE
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 12, 10, 1;
0, 144, 156, 28, 1;
0, 2880, 3696, 908, 60, 1;
...
n=5,[0,2880,3696,908,60,1] stands for the polynomial x*(2880 + 3696*x + 908*x^2 + 60*x^3 + 1*x^4) with one zero 0 and some other four zeros.
Tridiagonal matrix V(5,1) = [[0,0,0,0,0], [1,-2,1,0,0], [0,4,-8,4,0], [0,0,9,-18,9], [0,0,0,16,-32]].
MATHEMATICA
nmax = 9; T[n_, m_] := T[n, m] = (-(n-2)^2)*(n-1)^2*T[n-2, m] + T[n-1, m-1] + 2*(n-1)^2*T[n-1, m]; T[n_, m_] /; n < m = 0; T[-1, _] = 0; T[0, 0] = 1; T[_, -1] = 0; Flatten[Table[T[n, m], {n, 0, nmax}, {m, 0, n}]] (* Jean-François Alcover, Sep 26 2011, after recurrence *)
PROG
(Magma)
function T(n, k) // T = A129065
if k lt 0 or k gt n then return 0;
elif n eq 0 then return 1;
else return 2*(n-1)^2*T(n-1, k) - 4*Binomial(n-1, 2)^2*T(n-2, k) + T(n-1, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2024
(SageMath)
@CachedFunction
def T(n, k): # T = A129065
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return 2*(n-1)^2*T(n-1, k) - 4*binomial(n-1, 2)^2*T(n-2, k) + T(n-1, k-1)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 07 2024
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, May 04 2007
STATUS
approved