a(n,m) tabl head (triangle) for A129062
 
 Matrix product S2*|S1|, i.e. a(n,m)==sum(S2(n,k)*|S1(k,m)|,k=m..n), n>=0.


   n\m    0          1          2          3         4         5        6       7     8    9 ...

   0      1          0          0          0         0         0        0       0     0    0
 
   1      0          1          0          0         0         0        0       0     0    0

   2      0          2          1          0         0         0        0       0     0    0

   3      0          6          6          1         0         0        0       0     0    0

   4      0         26         36         12         1         0        0       0     0    0

   5      0        150        250        120        20         1        0       0     0    0

   6      0       1082       2040       1230       300        30        1       0     0    0

   7      0       9366      19334      13650      4270       630       42       1     0    0

   8      0      94586     209580     166376     62160     11900     1176      56     1    0

   9      0    1091670    2562354    2229444    952728    220500    28476    2016    72    1
 
   .
   .
   .

E.g.f. column nr. m (leading zeros): ((-ln(2-exp(x))^m)/m!, m>=0.

Due to Jabotinsky structure: S2 has e.g.f. for second (m=1) column exp(x)-1, |S1| has e.g.f. for 
second column -ln(1-x).  Therefore the product S2*|S1| has e.g.f. for the second column 
-ln(1-(exp(x)-1)) = -ln(2-exp(x)).   

From the e.g.f.s for the columns one gets the
e.g.f. for the row polynomials P(n,x):=sum(a(n,m)*x^m,m=0..n) as 1/(2-exp(z))^x. 


E.g.f. row sums 1/(2-exp(x)): A000670 [1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, ...].
 
Columns without leading zeros: 
m=1: A000629, m=2: A129063, m=3: A129064.
 

######################################### e.o.f. ###############################################