|
|
A129062
|
|
T(n, k) = [x^k] Sum_{k=0..n} Stirling2(n, k)*RisingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n.
|
|
10
|
|
|
1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 26, 36, 12, 1, 0, 150, 250, 120, 20, 1, 0, 1082, 2040, 1230, 300, 30, 1, 0, 9366, 19334, 13650, 4270, 630, 42, 1, 0, 94586, 209580, 166376, 62160, 11900, 1176, 56, 1, 0, 1091670, 2562354, 2229444, 952728, 220500, 28476, 2016, 72, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Matrix product of Stirling2 with unsigned Stirling1 triangle.
For the subtriangle without column nr. m=0 and row nr. n=0 see A079641.
The reversed matrix product |S1|. S2 is given in A111596.
As a product of lower triangular Jabotinsky matrices this is a lower triangular Jabotinsky matrix. See the D. E. Knuth references given in A039692 for Jabotinsky type matrices.
E.g.f. for row polynomials P(n,x):=sum(a(n,m)*x^m,m=0..n) is 1/(2-exp(z))^x. See the e.g.f. for the columns given below.
A048993*A132393 as infinite lower triangular matrices. - Philippe Deléham, Nov 01 2009
Triangle T(n,k), read by rows, given by (0,2,1,4,2,6,3,8,4,10,5,...) DELTA (1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 19 2011.
Also the Bell transform of A000629. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
|
|
LINKS
|
Table of n, a(n) for n=0..54.
W. Lang, First ten rows and more.
Olivier Bodini, Antoine Genitrini, Cécile Mailler, Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
|
|
FORMULA
|
a(n,m) = sum(S2(n,k)*|S1(k,m)|, k=m..n), n>=0; S2=A048993, S1=A048994.
E.g.f. column nr. m (with leading zeros): (f(x)^m)/m! with f(x):= -log(1-(exp(x)-1)) = -log(2-exp(x)).
Sum_{0<=k<=n} T(n,k)*x^k = A153881(n+1), A000007(n), A000670(n), A005649(n) for x = -1,0,1,2 respectively. - Philippe Deléham, Nov 19 2011
|
|
EXAMPLE
|
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 6, 6, 1;
0, 26, 36, 12, 1;
0, 150, 250, 120, 20, 1;
0, 1082, 2040, 1230, 300, 30, 1;
|
|
MAPLE
|
# The function BellMatrix is defined in A264428.
BellMatrix(n -> polylog(-n, 1/2), 9); # Peter Luschny, Jan 27 2016
|
|
MATHEMATICA
|
rows = 9;
t = Table[PolyLog[-n, 1/2], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
p[n_] := Sum[StirlingS2[n, k] Pochhammer[x, k], {k, 0, n}];
Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten (* Peter Luschny, Jun 27 2019 *)
|
|
PROG
|
(Sage)
def a_row(n):
s = sum(stirling_number2(n, k)*rising_factorial(x, k) for k in (0..n))
return expand(s).list()
[a_row(n) for n in (0..9)] # Peter Luschny, Jun 28 2019
|
|
CROSSREFS
|
Cf. A000629, A000670, A005649, A079641, A325872, A325873.
Sequence in context: A111596 A271703 A276922 * A281662 A163936 A288874
Adjacent sequences: A129059 A129060 A129061 * A129063 A129064 A129065
|
|
KEYWORD
|
nonn,tabl,easy
|
|
AUTHOR
|
Wolfdieter Lang, May 04 2007
|
|
EXTENSIONS
|
New name by Peter Luschny, Jun 27 2019
|
|
STATUS
|
approved
|
|
|
|