login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129062 T(n, k) = [x^k] Sum_{k=0..n} Stirling2(n, k)*RisingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n. 10
1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 26, 36, 12, 1, 0, 150, 250, 120, 20, 1, 0, 1082, 2040, 1230, 300, 30, 1, 0, 9366, 19334, 13650, 4270, 630, 42, 1, 0, 94586, 209580, 166376, 62160, 11900, 1176, 56, 1, 0, 1091670, 2562354, 2229444, 952728, 220500, 28476, 2016, 72, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Matrix product of Stirling2 with unsigned Stirling1 triangle.

For the subtriangle without column nr. m=0 and row nr. n=0 see A079641.

The reversed matrix product |S1|. S2 is given in A111596.

As a product of lower triangular Jabotinsky matrices this is a lower triangular Jabotinsky matrix. See the D. E. Knuth references given in A039692 for Jabotinsky type matrices.

E.g.f. for row polynomials P(n,x):=sum(a(n,m)*x^m,m=0..n) is 1/(2-exp(z))^x. See the e.g.f. for the columns given below.

A048993*A132393 as infinite lower triangular matrices. - Philippe Deléham, Nov 01 2009

Triangle T(n,k), read by rows, given by (0,2,1,4,2,6,3,8,4,10,5,...) DELTA (1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 19 2011.

Also the Bell transform of A000629. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

LINKS

Table of n, a(n) for n=0..54.

W. Lang, First ten rows and more.

FORMULA

a(n,m) = sum(S2(n,k)*|S1(k,m)|, k=m..n), n>=0; S2=A048993, S1=A048994.

E.g.f. column nr. m (with leading zeros): (f(x)^m)/m! with f(x):= -log(1-(exp(x)-1)) = -log(2-exp(x)).

Sum_{0<=k<=n} T(n,k)*x^k = A153881(n+1), A000007(n), A000670(n), A005649(n) for x = -1,0,1,2 respectively. - Philippe Deléham, Nov 19 2011

EXAMPLE

Triangle begins:

1;

0,    1;

0,    2,    1;

0,    6,    6,    1;

0,   26,   36,   12,   1;

0,  150,  250,  120,  20,  1;

0, 1082, 2040, 1230, 300, 30,  1;

MAPLE

# The function BellMatrix is defined in A264428.

BellMatrix(n -> polylog(-n, 1/2), 9); # Peter Luschny, Jan 27 2016

MATHEMATICA

rows = 9;

t = Table[PolyLog[-n, 1/2], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t];

Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)

p[n_] := Sum[StirlingS2[n, k] Pochhammer[x, k], {k, 0, n}];

Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten (* Peter Luschny, Jun 27 2019 *)

PROG

(Sage)

def a_row(n):

    s = sum(stirling_number2(n, k)*rising_factorial(x, k) for k in (0..n))

    return expand(s).list()

[a_row(n) for n in (0..9)] # Peter Luschny, Jun 28 2019

CROSSREFS

Cf. A000629, A000670, A005649, A079641, A325872, A325873.

Sequence in context: A111596 A271703 A276922 * A281662 A163936 A288874

Adjacent sequences:  A129059 A129060 A129061 * A129063 A129064 A129065

KEYWORD

nonn,tabl,easy

AUTHOR

Wolfdieter Lang, May 04 2007

EXTENSIONS

New name by Peter Luschny, Jun 27 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 15:03 EDT 2019. Contains 328030 sequences. (Running on oeis4.)