login
Number of n-node triangulations of the nonorientable surface N_5 in which every node has degree >= 7.
0

%I #6 Aug 05 2018 13:33:26

%S 0,2,1679,41336,195779

%N Number of n-node triangulations of the nonorientable surface N_5 in which every node has degree >= 7.

%H G. Ringel, <a href="https://doi.org/10.1007/BF01343898">Wie man die geschlossenen nichtorientierbaren Flächen in möglichst wenig Dreiecke zerlegen kann</a>, Math. Ann. 130 (1955), 317-326.

%H Thom Sulanke, <a href="http://hep.physics.indiana.edu/~tsulanke/graphs/surftri/">Generating triangulations of surfaces (surftri)</a>, (also subpages).

%K nonn,more

%O 8,2

%A _N. J. A. Sloane_, May 13 2007