OFFSET
1,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).
FORMULA
G.f.: 24*x^2/(1-2*x)^4. - Vincenzo Librandi, Feb 12 2013
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4). - Vincenzo Librandi, Feb 12 2013
From Amiram Eldar, Oct 02 2022: (Start)
Sum_{n>=2} 1/a(n) = (2*log(2)-1)/8.
Sum_{n>=2} (-1)^n/a(n) = (3/2)^2*log(3/2) - 7/8. (End)
MATHEMATICA
CoefficientList[Series[24 x/(1 - 2 x)^4, {x, 0, 30}], x] (* or *) LinearRecurrence[{8, -24, 32, -16}, {0, 24, 192, 960}, 30] (* Vincenzo Librandi, Feb 12 2013 *)
PROG
(Magma) [(n^3-n)*2^n: n in [1..25]]; /* or */ I:=[0, 24, 192, 960]; [n le 4 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
(PARI) a(n)=(n^3-n)<<n \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Apr 28 2007
EXTENSIONS
Offset corrected by Mohammad K. Azarian, Nov 19 2008
STATUS
approved