login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128834 Periodic sequence 0,1,1,0,-1,-1,... 17
0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Unsigned version in A011655 .

LINKS

Table of n, a(n) for n=0..104.

Index entries for sequences related to Chebyshev polynomials.

Index to sequences with linear recurrences with constant coefficients, signature (1,-1).

FORMULA

a(0)=0, a(1)=1, a(n+1) = a(n)-a(n-1) for n>=1.

G.f.:x*(1+x)/(1+x^3).

Euler transform of length 6 sequence [ 1, -1, -1, 0, 0, 1]. - Michael Somos Apr 15 2007

G.f. A(x) satisfies 0= f(A(x), A(x^2)) where f(u, v)= v -u^2 +2*u*v -2*u^2*v . - Michael Somos Apr 15 2007

G.f. A(x) satisfies 0= f(A(x), A(x^3)) where f(u, v)= v -u^3 +3*u*v -3*u^3*v . - Michael Somos Apr 15 2007

a(n)=(1/6)*{-(n mod 6)+[(n+2) mod 6]+[(n+3) mod 6]-[(n+5) mod 6]}, with n>=0 - Paolo P. Lava, Jun 11 2007

a(n) = A010892(n-1) . - R. J. Mathar, Feb 08 2008

a(n) = A010892(n+5) [From Jaume Oliver Lafont, Dec 05 2008]

a(n) is multiplicative with a(3^e) = 0^e, a(p^e) = 1 if p == 1 (mod 3), a(p^e) = (-1)^e if p == 2 (mod 3) . - Michael Somos Apr 15 2007

a(n)=2*sin(n*pi/3)/sqrt(3) [From Jaume Oliver Lafont, Dec 05 2008]

Contribution from Wolfdieter Lang, Jul 18 2010: (Start)

O.g.f.: x/(1-x+x^2) = x*S(x), with S(x) o.g.f. for Chebyshev S(n,1) = U(n,1/2) = A010892(n).

a(n) = S(n-1,1) = U(n-1,1/2) with S(-1,1)=0. (End)

EXAMPLE

x + x^2 - x^4 - x^5 + x^7 + x^8 - x^10 - x^11 + x^13 + x^14 - x^16 + ...

PROG

(PARI) {a(n)= [0, 1, 1, 0, -1, -1][n%6 +1]}

(Sage)

def A128834():

    x, y = 0, -1

    while true:

        yield -x

        x, y = y, -x + y

a = A128834(); [a.next() for i in range(40)]  # Peter Luschny, Jul 11 2013

CROSSREFS

Sequence in context: A092220 A011655 A102283 * A022928 A000494 A022933

Adjacent sequences:  A128831 A128832 A128833 * A128835 A128836 A128837

KEYWORD

sign,mult,easy

AUTHOR

Philippe Deléham, Apr 13 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 23 11:22 EDT 2014. Contains 240919 sequences.