login
A128829
Numbers k such that 6*k^2 + 17 is prime.
1
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 41, 42, 44, 46, 48, 49, 50, 53, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 75, 76, 77, 79, 81, 82, 83, 89, 95, 96, 98, 100, 101, 103, 106, 107, 108, 110, 111, 113
OFFSET
1,3
EXAMPLE
6*8^2 + 17 = 401 is prime, hence 8 is a term.
MAPLE
a:=proc(n) if isprime(6*n^2+17)=true then n else fi end: seq(a(n), n=0..150); # Emeric Deutsch, Apr 16 2007
MATHEMATICA
f[a_]:=6*a^2+17; lst={}; Do[If[PrimeQ[f[n]], AppendTo[lst, n]], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 14 2009 *)
Select[Range[0, 200], PrimeQ[6#^2+17]&] (* Harvey P. Dale, Jun 03 2014 *)
PROG
(Magma) [ n: n in [0..113] | IsPrime(6*n^2+17) ]; /* Klaus Brockhaus, Apr 16 2007 */
(PARI) is(n)=isprime(6*n^2+17) \\ Charles R Greathouse IV, Jun 13 2017
CROSSREFS
Sequence in context: A296864 A124695 A005555 * A342478 A194967 A023770
KEYWORD
nonn,less,easy
AUTHOR
J. M. Bergot, Apr 13 2007
EXTENSIONS
Edited and extended by Klaus Brockhaus and Emeric Deutsch, Apr 16 2007
STATUS
approved