The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128776 a(n) = numerator of b(n): b(1)=2. b(n) be such that the continued fraction (of +-rational terms) [b(1);b(2),...,b(n)] = sum{k=1 to n-1} 1/b(k), for every integer n >= 2. 1
 2, -2, 3, 7, -16, 141, -3023 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This sequence is infinite if and only if b(n) does not equal -b(n+1) for every positive integer n. LINKS FORMULA For n >= 5, b(n) = - (b(n-1) + b(n-2)) * (b(n-2) + b(n-3)) /(b(n-1) * b(n-2)^2). EXAMPLE {b(k)} begins: 2, -2/3, 3, 7/3, -16/27, 141/49, -3023/768,... So for example, 1/2 -3/2 + 1/3 = 2 + 1/(-2/3 +1/(3 + 3/7)) and 1/2 -3/2 + 1/3 + 3/7 = 2 + 1/(-2/3 +1/(3 + 1/(7/3 - 27/16))). CROSSREFS Cf. A128777. Sequence in context: A032257 A038075 A032236 * A117387 A113842 A032161 Adjacent sequences:  A128773 A128774 A128775 * A128777 A128778 A128779 KEYWORD frac,more,sign AUTHOR Leroy Quet, Mar 27 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 07:18 EST 2020. Contains 331189 sequences. (Running on oeis4.)