%I
%S 1,2,4,6,9,12,12,16,20,24,25,30,35,40,45,48,54,60,66,72,78,84,91,98,
%T 105,112,119,126,128,136,144,152,160,168,176,184,189,198,207,216,225,
%U 234,243,252,261,270,280,290,300,310,320,330,340,350,360,363,374,385,396
%N Triangle where the nth row, of n terms in order, contains consecutive multiples of n. The smallest term of row n is the smallest integer >= the largest term of row (n1), for n >= 2.
%C If we instead had the triangle where the smallest term of row n is the smallest integer strictly > the largest term of row (n1), for n >= 2, then we would have sequence A033291.
%F T(n,k+1)=T(n,k)+n for 1<=k<n. T(n,1)=n*ceil[T(n1,n1)/n] for n>=2.  _R. J. Mathar_, Nov 01 2007
%e Triangle starts
%e 1;
%e 2, 4;
%e 6, 9, 12;
%e 12, 16, 20, 24;
%e 25, 30, 35, 40, 45;
%e 48, 54, 60, 66, 72, 78;
%e 84, 91, 98,105,112,119,126;
%e 128,136,144,152,160,168,176,184;
%e 189,198,207,216,225,234,243,252,261;
%p A128716 := proc(n,k) option remember ; if n = 1 then 1 ; elif k = 1 then n*ceil(A128716(n1,n1)/n) ; else A128716(n,k1)+n ; fi ; end: for n from 1 to 11 do for k from 1 to n do printf("%d,",A128716(n,k)) ; od: od: # _R. J. Mathar_, Nov 01 2007
%Y Cf. A033291.
%K easy,nonn,tabl
%O 1,2
%A _Leroy Quet_, Jun 12 2007
%E More terms from _R. J. Mathar_, Nov 01 2007
