OFFSET
1,2
COMMENTS
If we instead had the triangle where the smallest term of row n is the smallest integer strictly greater than the largest term of row (n-1), for n >= 2, then we would have sequence A033291.
FORMULA
T(n,k+1) = T(n,k) + n for 1 <= k < n. T(n,1) = n*ceiling(T(n-1,n-1)/n) for n >= 2. - R. J. Mathar, Nov 01 2007
EXAMPLE
Triangle starts
1;
2, 4;
6, 9, 12;
12, 16, 20, 24;
25, 30, 35, 40, 45;
48, 54, 60, 66, 72, 78;
84, 91, 98, 105, 112, 119, 126;
128, 136, 144, 152, 160, 168, 176, 184;
189, 198, 207, 216, 225, 234, 243, 252, 261;
MAPLE
A128716 := proc(n, k) option remember ; if n = 1 then 1 ; elif k = 1 then n*ceil(A128716(n-1, n-1)/n) ; else A128716(n, k-1)+n ; fi ; end: for n from 1 to 11 do for k from 1 to n do printf("%d, ", A128716(n, k)) ; od: od: # R. J. Mathar, Nov 01 2007
CROSSREFS
KEYWORD
AUTHOR
Leroy Quet, Jun 12 2007
EXTENSIONS
More terms from R. J. Mathar, Nov 01 2007
STATUS
approved