login
A128583
Expansion of chi(x) * psi(x^2) * phi(-x^6) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
7
1, 1, 1, 2, 1, 2, 1, 1, 1, 0, 3, 1, 1, 1, 2, 2, 1, 2, 0, 1, 2, 1, 0, 1, 2, 3, 0, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 1, 0, 1, 4, 1, 2, 0, 1, 2, 1, 2, 1, 1, 3, 0, 1, 2, 3, 1, 0, 1, 0, 0, 2, 2, 1, 1, 2, 2, 1, 1, 2, 0, 1, 2, 0, 1, 1, 6, 1, 1, 1, 0, 2, 1
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/24) * eta(q^2) * eta(q^4) * eta(q^6)^2 / (eta(q) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 1, 0, 1, -1, 1, -2, 1, -1, 1, 0, 1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = 6^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A229723.
a(n) = A128582(4*n) = A259895(3*n) = A260118(4*n). 2 * a(n) = A190615(12*n + 2). - Michael Somos, Nov 15 2015
-2 * a(n) = A128580(12*n + 2). - Michael Somos, Dec 22 2016
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + x^4 + 2*x^5 + x^6 + x^7 + x^8 + 3*x^10 + ...
G.f. = q^5 + q^29 + q^53 + 2*q^77 + q^101 + 2*q^125 + q^149 + q^173 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^4] QPochhammer[ x^6]^2 / (QPochhammer[ x] QPochhammer[ x^12] ), {x, 0, n}];
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] EllipticTheta[ 4, 0, x^6] EllipticTheta[ 2, 0, x] / (2 x^(1/4)), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x + A) * eta(x^12 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 11 2007
STATUS
approved