The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128542 a(n) = ((2n)^(2n) - 1)/((2n+1)*(2n-1)). 1
 0, 1, 17, 1333, 266305, 101010101, 62350352785, 56984650387477, 72340172838076673, 121815504877079063701, 262801002506265664160401, 706890015246831381773595701, 2319540481478754999041880822337, 9120177155862455275254332279111413 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS p divides a(p-1) for prime p>3. LINKS G. C. Greubel, Table of n, a(n) for n = 0..190 FORMULA a(n) = ((2n)^(2n)-1)/((2n+1)*(2n-1)). a(n) = A048861(2n)/((2n+1)*(2n-1)). a(n) = A023037(2n)/(2n+1). a(n) = A089815(2n-2). MATHEMATICA Join[{0}, Table[((2n)^(2n)-1)/(4n^2-1), {n, 1, 20}]] PROG (PARI) A128542(n)=((n+=n)^n-1)/(n^2-1) \\ M. F. Hasler, Oct 31 2014 (MAGMA) [0] cat [((2*n)^(2*n)-1)/(4*n^2 -1): n in [1..20]]; // G. C. Greubel, Jul 11 2019 (Sage) [0]+[((2*n)^(2*n)-1)/(4*n^2 -1) for n in (1..20)] # G. C. Greubel, Jul 11 2019 (GAP) Concatenation([0], List([1..20], n-> ((2*n)^(2*n)-1)/(4*n^2 -1) )); # G. C. Greubel, Jul 11 2019 CROSSREFS Cf. A048861 = n^n - 1. Cf. A023037, A089815. Sequence in context: A188717 A266866 A289945 * A316746 A067409 A219562 Adjacent sequences:  A128539 A128540 A128541 * A128543 A128544 A128545 KEYWORD nonn AUTHOR Alexander Adamchuk, May 08 2007 EXTENSIONS a(0)=0 added by M. F. Hasler, Oct 31 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 03:30 EST 2020. Contains 332299 sequences. (Running on oeis4.)