login
A128542
a(n) = ((2n)^(2n) - 1)/((2n+1)*(2n-1)).
1
0, 1, 17, 1333, 266305, 101010101, 62350352785, 56984650387477, 72340172838076673, 121815504877079063701, 262801002506265664160401, 706890015246831381773595701, 2319540481478754999041880822337, 9120177155862455275254332279111413
OFFSET
0,3
COMMENTS
p divides a(p-1) for prime p>3.
LINKS
FORMULA
a(n) = ((2n)^(2n)-1)/((2n+1)*(2n-1)).
a(n) = A048861(2n)/((2n+1)*(2n-1)).
a(n) = A023037(2n)/(2n+1).
a(n) = A089815(2n-2).
MATHEMATICA
Join[{0}, Table[((2n)^(2n)-1)/(4n^2-1), {n, 1, 20}]]
PROG
(PARI) A128542(n)=((n+=n)^n-1)/(n^2-1) \\ M. F. Hasler, Oct 31 2014
(Magma) [0] cat [((2*n)^(2*n)-1)/(4*n^2 -1): n in [1..20]]; // G. C. Greubel, Jul 11 2019
(Sage) [0]+[((2*n)^(2*n)-1)/(4*n^2 -1) for n in (1..20)] # G. C. Greubel, Jul 11 2019
(GAP) Concatenation([0], List([1..20], n-> ((2*n)^(2*n)-1)/(4*n^2 -1) )); # G. C. Greubel, Jul 11 2019
CROSSREFS
Cf. A048861 = n^n - 1.
Sequence in context: A188717 A266866 A289945 * A316746 A067409 A219562
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, May 08 2007
EXTENSIONS
a(0)=0 added by M. F. Hasler, Oct 31 2014
STATUS
approved